Electronic supplementary information

A High-Power Lithium-Ion Hybrid Capacitor based on the Hollow N-

Doped Carbon Nanobox Anode and its Porous Analogue cathode

Tian Liang, ^a Huanwen Wang, *^a Rixin Fei, ^a Rui Wang, ^a Beibei He, ^a Yansheng Gong, ^a and

Chunjie Yan^a

^a Engineering Research Center of Nano-Geomaterials, Ministry of Education, Faculty of Material and Chemistry, China University of Geosciences, Lu Mo Road 388, Wuhan 430074, PR China.

Corresponding authors*: wanghw@cug.edu.cn

Fig. S1 SEM images of (a, b) NCBK and (c, d) flake graphite.

Fig. S2 (a) Nitrogen adsorption/desorption isotherms and (b) pore-size distribution curve of HNCNB and PHNCNB.

Fig. S3. GCD curves of (a) NCNP, (b) PHNCNB and (c) FG, (d) rate performance of FG.

Fig. S4. EIS spectra of HNCNB before and after cycling.

Fig. S5 SEM images of the HNCNB anode after 2000 cycles at 5.0 A $g^{\text{-}1}$.

Fig. S6. (a) Rate capability and (b) cycling performance of the PHNCNB cathode with two different electrode thicknesses (60 and 200 μ m) in half-cells.

Fig. S7. (a) Rate capability and (b) cycling performance of the HNCNB//PHNCNB hybrid capacitors with different anode to cathode mass ratios.

Fig. S8. GCD and CV curves of LIHC measured at (a, b) 0 °C, (c, d) 25 °C, (e, f) 60 °C.

	PHNCNB.		
	HNCNB	PHNCNB	
C1s %	84.18	92.75	
N1s %	13.19	2.61	
O1s %	2.63	4.64	
C-C %	54.96	67.32	
C-N %	30.20	19.77	
C-O %	14.84	12.91	
Pyridinic-N %	31.86	17.31	
Pyrrolic-N %	19.69	22.31	
Quarternary-N %	42.32	42.92	
Oxidize-N %	6.13	17.46	

Table S1. Percentage (Atomic %) of various element and functional groups in HNCNB and PHNCNB.

Materials	Cycling stability	Rate performance	Ref.		
		390 mAh g ⁻¹ at 7.8 A g ⁻¹			
		353 mAh g ⁻¹ at 11.72 A			
NSPCs	1150 mAh g ⁻¹ at 0.39 A g ⁻¹ after 100 cycles	g ⁻¹	1		
		325 mAh g ⁻¹ at 15.62 A			
		g ⁻¹			
		410 mAh g ⁻¹ at 1 A g ⁻¹			
N-PCS	538 mAh g ⁻¹ at 0.5 A g ⁻¹ after 100 cycles	293 mAh g ⁻¹ at 2 A g ⁻¹	2		
		215 mAh g ⁻¹ at 3 A g ⁻¹			
2112	2244 mAh g ⁻¹ at 0.15 A g ⁻¹ after 50 cycles	1040 mAh g ⁻¹ at 0.5 A g ⁻¹	2		
PNG	438 mAh g ⁻¹ at 5 A g ⁻¹ after 1500 cycles	745 mAh g ⁻¹ at 1 A g ⁻¹	3		
		326 mAh g ⁻¹ at 1 A g ⁻¹			
AMC	429 mAh g ⁻¹ at 1 A g ⁻¹ after 200 cycles	275 mAh g ⁻¹ at 2 A g ⁻¹	4		
		203 mAh g^{-1} at 5 A g^{-1}			
ANCS	1367 mAh g ⁻¹ at 0.1 A g ⁻¹ after 100 cycles	$467 \text{ mAng}^{-1} \text{ at } 4 \text{ Ag}^{-1}$	5		
	638 mAh g $^{-1}$ at 2 A g $^{-1}$ after 2000 cycles	$301 \text{ mAh g}^{-1} \text{ at } 5 \text{ A g}^{-1}$			
	816 mAh g ⁻¹ at 0.1 A g ⁻¹ after 50 cycles	581 mAh g ⁻¹ at 0.5 A g ⁻¹			
NB-PCNFs	636 mAh g ⁻¹ at 2 A g ⁻¹ after 200 cycles	459 mAh g^{-1} at 1 A g^{-1}	6		
		$376 \text{ mAn g}^{-1} \text{ at } 3 \text{ A g}^{-1}$			
BNC	444 mAb g^{-1} at 2 A g^{-1} after 5000 cycles	$371 \text{ mAh } \text{g}^{-1} \text{ at } 5 \text{ A } \text{g}^{-1}$	7		
Dive		270 mAh g^{-1} at 10 A g}^{-1}			
	616 mAb a^{-1} at 0.5 A a^{-1} after 250 cycles	503 mAh g^{-1} at 1.5 A g ⁻¹	8		
NIICS-0	010 mAh g^{-1} at 0.1 A g $^{-1}$ after 100 cycles				
G-graphitic HCS	$935 \text{ IIIAII g}^{-1} \text{ at } 0.1 \text{ A g}^{-1} \text{ after } 100 \text{ cycles}$	410 mAh g ⁻¹ at 5 A g ⁻¹	9		
	595 IIIAII B - al 1 A B - alter 1000 cycles	$292.1 \text{ mAb } c^{-1} \text{ at } 1.4 \text{ c}^{-1}$			
graphene hollow spheres		382.1 mAn g ¹ at 1 A g ¹	10		
	424 mAh g ⁻¹ at 1 A g ⁻¹ after 100 cycles	316.9 mAh g ⁻¹ at 2 A g ⁻¹	10		
		249.3 mAh g ⁻¹ at 5 A g ⁻¹			
NCSs	660 mAh g ⁻¹ at 0.05 A g ⁻¹ after 50 cycles	341 mAh g ⁻¹ at 0.5 A g ⁻¹	11		
		255 mAh g ⁻¹ at 1 A g ⁻¹			

Table	s2. (Cyclin	g and	rate	perf	ormar	nce o	f variou	is cai	rbon	mate	rials	as a	anod	e in	Li	half	cel	ls.
																			_

N-MCHSs	485 mAh g ⁻¹ at 0.5 A g ⁻¹ after 1100 cycles	214 mAh g ⁻¹ at 4 A g ⁻¹	12
hN-CCs	750 mAh g ⁻¹ at 2 A g ⁻¹ after 600 cycles	285 mAh g ⁻¹ at 20 A g ⁻¹	13
	669 mAh g ⁻¹ at 0.2 A g ⁻¹ after 200 cycles	440 mAh g ⁻¹ at 5 A g ⁻¹	Our
HNCNB	537.3 mAh g ⁻¹ at 1 A g ⁻¹ after 500 cycles	392 mAh g ⁻¹ at 10 A g ⁻¹	wor
	344.5 mAh g ⁻¹ at 5 A g ⁻¹ after 2000 cycles	322 mAh g ⁻¹ at 20 A g ⁻¹	k

Hybrid systems (anode//cathode)	Volta ge wind ow (V)	Energy density and corresponding power density	Cycling stability	Ref.
	1.0-	30 Wh kg ⁻¹ at 1000 W kg ⁻¹	84% after	14
LI4 II5 O12-graphene//AC	2.5	4 Wh kg ⁻¹ at 15000 W kg ⁻¹	10000 cycles	14
Graphene-	0.8-	95 Wh kg ⁻¹ at 45 W kg ⁻¹	87% after 500	15
$Li_4Ti_5O_{12}//Graphene$	2.5	32 Wh kg ⁻¹ at 3000 W kg ⁻¹	cycles	10
	1.0-	42 Wh kg ⁻¹ at 800 W kg ⁻¹	80% after100	16
110 ₂ -rGO//AC	4.5	8.9 Wh kg ⁻¹ at 8000 W kg ⁻¹	cycles	10
TIO NRA//graphone	0 2 0	82 Wh kg ⁻¹ at 570 W kg ⁻¹	73% after 600	17
nO ₂ NBA//graphene	0-3.8	21 Wh kg ⁻¹ at 19000 W kg ⁻¹	cycles	17
			Stable for	
TiP ₂ O ₇ //AC	0-3	13 Wh kg ⁻¹ at 46 W kg ⁻¹	100-500	18
			cycles	
	1.8-	25.5 Wh kg ⁻¹ at 40 W kg ⁻¹	80% after	19
$CNT-V_2O_5//AC$	4.0	6.9 Wh kg ⁻¹ at 6300 W kg ⁻¹	10000 cycles	13
Creative //UDCO	2.0-	106 Wh kg ⁻¹ at 84 W kg ⁻¹	100% after	20
Graphile//OKGO	4.0	85 Wh kg ⁻¹ at 4200 W kg ⁻¹	1000 cycles	20
	1.5-	102 0 M/b bar1 at 10000 M/bar1	85% after	21
Graphite//AC	4.5	103.8 WH Kg ⁺ at 10000 W Kg ⁺	10000 cycles	
Fo O granhana //granhana	1.0-	147 Wh kg ⁻¹ at 150 W kg ⁻¹	70% after	22
Fe ₃ O ₄ -graphene//graphene	4.0	86 Wh kg ⁻¹ at 2587 W kg ⁻¹	1000 cycles	
S: C//AC	2.0-	230 Wh kg ⁻¹ at 1747 W kg ⁻¹ ,	76.3% after	23
Si-C//AC	4.5	141 Wh kg ⁻¹ at 30127 W kg ⁻¹	8000 cycles	23
	2.0-	128 Wh kg ⁻¹ at 1229 W kg ⁻¹	70% after	24
B-Si-SiO ₂ -C//PSC	4.5	89 Wh kg ⁻¹ at 9704 W kg ⁻¹	6000 cycles	27
	1.0-	184 Wh kg ⁻¹ at 83 W kg ⁻¹	76% after	25
3D-IVITIO-CINS//CINS	4.5	90 Wh kg ⁻¹ at 15000 W kg ⁻¹	5000 cycles	25

Table S3. Electrochemical performance of various LICs.

	1.0		nearly no				
Nb ₂ O ₅ -C//AC	1.0-	63 Wh kg ⁻¹ at 70 W kg ⁻¹	fading after	26			
	3.5	5 Wh kg ⁻¹ at 16528 W kg ⁻¹	1000 cycles				
Nh Q. graphana papar//AC	0.01-	47 Wh kg ⁻¹ at 393 W kg ⁻¹	93% after	27			
ND ₂ O ₅ -graphene paper//AC	3.0	15 Wh kg ⁻¹ at 18000 W kg ⁻¹	2000 cycles	27			
Graphene-VN//carbon	0.4.0	162 Wh kg ⁻¹ at 200 W kg ⁻¹	86% after	28			
nanorods	0-4.0	64 Wh kg ⁻¹ at 10000 W kg ⁻¹	1000 cycles	10			
	045	101.5 Wh kg ⁻¹ at 450 W kg ⁻¹	83% after	29			
TIC//PHPNC	0-4.5	23.4 Wh kg ⁻¹ at 67500 W kg ⁻¹	5000 cycles	23			
Sn0 C//C	0.5- 110 Wh kg ⁻¹ at 190 W kg ⁻¹		80% after	30			
Sh0 ₂ -c//C	4.5	45 Wh kg ⁻¹ at 2960 W kg ⁻¹	5000 cycles	50			
	125	00 W/b kg=1 at 11000 W/ kg=1	80% after	31			
$H_2 H_6 O_{13} / / CIVIK-3$	1-3.5	90 WI kg - at 11000 W kg -	1000 cycles	51			
	0.4.0	157 Wh kg ⁻¹ at 200 W kg ⁻¹	86.5% after	32			
WITFe204//3DaC	0-4.0	58 Wh kg ⁻¹ at 22000 W kg ⁻¹	6000 cycles	52			
	045	220 Wh kg ⁻¹ at 225 W kg ⁻¹	81% after	7			
BINC//BINC	0-4.5	104 Wh kg ⁻¹ at 22500 W kg ⁻¹	5000 cycle	·			
	045	207.6 Wh kg ⁻¹ at 225 W kg ⁻¹	86% after	5			
ANCS//ANCS	0-4.5	115.4 Wh kg ⁻¹ at 22500 W kg ⁻¹	10000 cycles	Ĵ			
Hard carbon //AC	2.0-	96% ;		33			
	4.2		5000 cycles				
	2.0-	73.6 Wh kg ⁻¹ at 69.2 W kg ⁻¹	83% after	34			
HC//AC	4.0	36.6 Wh kg ⁻¹ at 11900 W kg ⁻¹	10000 cycles	5.			
AMC//PdCS	0.5-4	133 Wh kg ⁻¹ at 210 W kg ⁻¹	81.8% after	4			
		$42 \text{ WH kg}^{-1} \text{ at } 1200 \text{ W kg}^{-1}$	97 % after				
MCMB//AC	2-4	22.6 Wh kg ⁻¹ at 5500 W kg ⁻¹	1000 cvcles	35			
	1.0-	148.5 Wh kg ⁻¹ at 250 W kg ⁻¹	90% after	Our			
HNCNB//PHNCNB	4.0	112.1 Wh kg ⁻¹ at 25000 W kg ⁻¹	8000 cycles	work			

References

- 1 J. Zhang, Z. Yang, J. Qiu and H.-W. Lee, J. Mater. Chem. A, 2016, 4, 5802-5809.
- 2 D. Li, L.-X. Ding, H. Chen, S. Wang, Z. Li, M. Zhu and H. Wang, J. Mater. Chem. A, 2014, 2, 16617-16622.
- 3 X. Ma, G. Ning, C. Qi, C. Xu and J. Gao, ACS Appl. Mater. Inter., 2014, 6, 14415-14422.
- 4 W.S.V. Lee, X.L. Huang, T.L. Tan and J. M. Xue., ACS Appl. Mater. Inter., 2017, 10, 1690-1700.
- 5 F. Sun, X. Liu, H. B. Wu, L. Wang, J. Gao, H. Li and Y. Lu, *Nano Lett.*, 2018, **18**, 3368-3376.
- 6 L. Zhang, G. Xia, Z. Guo, D. Sun, X. Li and X. Yu, J. Power Sources, 2016, **324**, 294-301.
- 7 Q. Xia, H. Yang, M. Wang, M. Yang, Q. Guo, L. Wan, H. Xia and Y. Yu, Adv. Energy Mater., 2017, 7, 1701336.
- 8 Q. Ma, L. Wang, W. Xia, D. Jia and Z. Zhao, Chem.-Eur. J., 2016, 22, 2339-2344.
- 9 Lei Song, Sen Xin, Da-Wei Xu, Hui-Qin Li, Huai-Ping Cong and S.-H. Yu., ChemNanoMat, 2016, 2, 540-546.
- 10 D. Cai, L. Ding, S. Wang, Z. Li, M. Zhu and H. Wang, Electrochim. Acta, 2014, 139, 96-103.
- 11 T. Chen, L. Pan, T. A. Loh, D. H. Chua, Y. Yao, Q. Chen, D. Li, W. Qin and Z. Sun, *Dalton T.*, 2014, **43**, 14931-14935.
- 12 K. Huo, W. An, J. Fu, B. Gao, L. Wang, X. Peng, G. J. Cheng and P. K. Chu, *J. Power Sources*, 2016, **324**, 233-238.
- 13 C. Hu, Y. Xiao, Y. Zhao, N. Chen, Z. Zhang, M. Cao and L. Qu, *Nanoscale*, 2013, **5**, 2726-2733.
- 14 N.S Xu, X.Z. Sun, X. Zhang, K. Wang and Y. W. Ma., RSC Adv., 2015, 5, 94361-94368.
- 15 V. Aravindan, D. Mhamane, W. C. Ling, S. Ogale and S. Madhavi, *ChemSusChem*, 2013, **6**, 2240-2244.
- 16 H. Kim, M.-Y. Cho, M.-H. Kim, K.-Y. Park, H. Gwon, Y. Lee, K. C. Roh and K. Kang, *Adv. Energy Mater.*, 2013, **3**, 1500-1506.
- 17 H. Wang, C. Guan, X. Wang and H. J. Fan, *Small*, 2015, **11**, 1470-1477.
- 18 V. Aravindan, M. V. Reddy, S. Madhavi, S. G. Mhaisalkar, G. V. Subba Rao and B. V. R. Chowdari, *J. Power Sources*, 2011, **196**, 8850-8854.
- 19 Z. Chen, V. Augustyn, J. Wen, Y. Zhang, M. Shen, B. Dunn and Y. Lu, Adv. Mater., 2011, 23, 791-795.
- 20 J. H. Lee, W. H. Shin, M. H. Ryou, J. K. Jin, J. Kim and J. W. Choi, ChemSusChem, 2012, 5, 2328-2333.
- 21 V. Khomenko, E. Raymundo-Piñero and F. Béguin, J. Power Sources, 2008, 177, 643-651.
- 22 F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang and Y. Chen, Energ. Environ. Sci., 2013, 6, 1623.
- 23 B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang and M. Cai, Adv. Energy Mater., 2016, 6, 1600802.
- 24 R. Yi, S. Chen, J. Song, M. L. Gordin, A. Manivannan and D. Wang, Adv. Funct. Mater., 2014, 24, 7433-7439.
- 25 H. Wang, Z. Xu, Z. Li, K. Cui, J. Ding, A. Kohandehghan, X. Tan, B. Zahiri, B. C. Olsen, C. M. Holt and D. Mitlin, *Nano Lett.*, 2014, **14**, 1987-1994.
- 26 E. Lim, C. Jo, H. Kim, M.H. Kim, Y.D. Mun, J.Y. Chun, Y.J. Ye, J. Hwang, K.S. Ha, K.C. Roh, K. Kang, S. Yoon and J. Lee, *ACS Nano*, 2015, **9**, 7497-7505.
- 27 L. Kong, C. Zhang, J. Wang, W. Qiao, L. Ling and D. Long, ACS Nano, 2015, 9, 11200-11208.
- 28 R. Wang, J. Lang, P. Zhang, Z. Lin and X. Yan, Adv. Funct. Mater., 2015, 25, 2270-2278.
- 29 H. Wang, Y. Zhang, H. Ang, Y. Zhang, H. T. Tan, Y. Zhang, Y. Guo, J. B. Franklin, X. L. Wu, M. Srinivasan, H. J. Fan and Q. Yan, *Adv. Funct. Mater.*, 2016, **26**, 3082-3093.
- 30 W. Qu, F. Han, A. Lu, C. Xing, M. Qiao and W. Li, J. Mater. Chem. A, 2014, 2, 6549.
- 31 Y. Wang, Z. Hong, M. Wei and Y. Xia, Adv. Funct. Mater., 2012, 22, 5185-5193.
- 32 W. S. V. Lee, E. Peng, M. Li, X. Huang and J. M. Xue, Nano Energy, 2016, 27, 202-212.
- 33 J. Zhang, X. Liu, J. Wang, J. Shi and Z. Shi, *Electrochim. Acta*, 2016, 187, 134-142.
- 34 X. Sun, X. Zhang, W. Liu, K. Wang, C. Li, Z. Li and Y. Ma, *Electrochim. Acta*, 2017, 235, 158-166.
- 35 Z.Q. Shi, J. Zhang, J. Wang, J.L. Shi and C. Y. Wang., Electrochim. Acta, 2015, 153, 476-483.