Electronic Supplementary Information (ESI)

Pressure-induced SERS enhancement in MoS₂/Au/R6G system by a two-step charge transfer process

Huanhuan Sun,^a Mingguang Yao,^{*a} Yanping Song,^a Luyao Zhu,^a Jiajun Dong,^a Ran Liu,^a Peng Li,^b Bing Zhao^b and Bingbing Liu^{*a}

^aState Key Laboratory of Superhard Materials, College of Physics, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China E-mail: yaomg@jlu.edu.cn, liubb@jlu.edu.cn ^bState Key Laboratory of Supramolecular Structure and Materials, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China

Fig. S1 (a) SEM image of pure Au NPs. The inset shows the photo image of gold solution. (b) UV-Vis spectrum of Au colloid NPs.

Fig. S2 The electric field distributions of (a) MoS_2 and (b) MoS_2 /Au composite.

The electromagnetic field distribution based on numerically simulated method was performed using finite-difference time-domain (FDTD) Solutions. Fig. S2a shows the electric field distribution of single MoS_2 NFs, in which the size of MoS_2 NFs was set to 700 nm according to the SEM images. The X, Y and Z directions were enclosed by perfect match layers. As shown in Fig. S2b, the distance between Au NPs was set to 2 nm, and the incident electric field was polarized in-plane with a wavelength of 473 nm.

Calculation of enhancement factor (EF)

The enhancement factor was estimated by the equation (2) in the manuscript. Take the R6G molecules adsorbed on MoS_2/Au composite as an example, the Raman peak of the in-plane vibration mode (613 cm⁻¹) in the Raman spectrum was selected to calculate EF values. The 613 cm⁻¹ Raman intensity of MoS_2/Au composite is 11864.7 counts with 50 s acquisition time, and that of MoS_2 NFs is 447.5 counts with 160 s acquisition time. The Raman intensity ratio is estimated as below

$$\frac{I_{\text{SERS}}}{I_{\text{bulk}}} = \frac{11864.7}{447.5} \times \frac{160}{50} = 84.8$$
$$N_{\text{SERS}} = \frac{cVN_{\text{A}}A_{\text{Raman}}}{A_{\text{sub}}}$$
$$N_{\text{bulk}} = \frac{\rho h N_{\text{A}}A_{\text{Raman}}}{M}$$

c is the molar concentration of the analyte molecules, *V* is the volume of the droplet, N_A is avogadro's constant (6.023×10²³), A_{Raman} is the area of laser spot (diameter in 1 µm), A_{sub} is the effective area of the substrates, 20 µL of the droplet on the substrate was spread into a circle of about 3 mm in diameter to form the effective area of the substrate (A_{Sub}). ρ is the density of R6G molelcules (1.15 g·cm⁻³), h is the confocal depth of laser (23.64 µm), M is the molecular weight of R6G (479 g/mol).

Taking all the measurement parameters into consideration, the EF value can be estimated based on the following equations:

$$EF(MoS_2/Au) = \frac{I_{SERS}N_{bulk}}{I_{bulk}N_{SERS}} = \frac{84.8 \times 1.15 \times 23.64 \times 15^2 \times \pi}{10^{-3} \times 479 \times 20} = 1.69 \times 10^7$$

 $EF(MoS_2) = 2.05 \times 10^4$

Therefore, we calculated the EF for R6G molecules on MoS_2/Au and MoS_2 substrates to be 1.69×10^7 and 2.05×10^4 , respectively. By the similar method, the EFs for MB and CV dye molecules adsorbed on MoS_2/Au substrate were calculated to be 6.53×10^7 and 2.13×10^7 , respectively.

Fig. S3 (a) PI-SERS spectra of R6G molecules adsorbed on MoS_2/Au composite under releasing pressure. (b) The change trend of Raman intensity of R6G molecules as a function of pressure. The strongest Raman peak at ~1333 cm⁻¹ is originated from the diamond.

Fig. S4 PL spectra of pure R6G molecules as a function of pressure along the compression (a) and decompression (b) path. PL spectra of R6G molecule (10^{-1} mol/L) adsorbed on MoS₂/Au composite as a function of pressure along the compression (c) and decompression (d) path. The strongest PL band at ~720 nm belongs to the frequency multiplier of 365 nm laser.

Fig. S5 (a) the pressure-dependence UV-VIS spectra of the $MoS_2/Au/R6G$ system and (b) the UV-VIS spectra of the $MoS_2/Au/R6G$ system at ambient pressure and at 2.39 GPa.