## SUPPORTING INFORMATION

## Three Sites Molecular Orbital Controlled Single-Molecule Rectifier based on Perpendicularly Linked Porphyrin-Imide Dyads

Murni Handayani<sup>[a,b]</sup>, Hirofumi Tanaka<sup>[a,c]</sup>, Shinichi Katayose<sup>[a]</sup>, Tatsuhiko Ohto<sup>[d]</sup>, Zhijin Chen<sup>[a]</sup>,

*Ryo Yamada*<sup>[d]</sup>, *Hirokazu Tada*<sup>[d]</sup>, and *Takuji Ogawa*\*<sup>[a]</sup>

[a] Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-

cho, Toyonaka, Osaka 560-0043, Japan.

<sup>[b]</sup>Indonesian Institute of Sciences (LIPI), Research Center for Metallurgy and Materials, Building

470, PUSPIPTEK, Tangerang Selatan, Banten 15314, Indonesia

<sup>[c]</sup>Department of Human Intelligence Systems, Graduate School of Life Science and Systems

Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196,

Japan

<sup>[d]</sup>Division of Materials Physics, Graduate School of Engineering Science, Osaka University, 1-3

Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan

#### CONTENTS

### Contents

| Method                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------|
| I-V curves measurement and Individual I–V curves of metal porphyrin–imide single-molecule diodes 5                         |
| <i>Figure S1.</i> Typical individual <i>I–V</i> curves of ZPI (I) and RPI (II)                                             |
| 2D conductance histogram of ZPI and RPI and the selected individual traces7                                                |
| Figure S2. (a) 2D Conductance histograms for ZPI constructed obtained from 1767 measurements of individual                 |
| traces. (b) 2D Conductance histograms for RPI constructed from 4070 measurements of individual traces. Insets:             |
| structure of ZPI and RPI. (c-d) Selected individual traces of ZPI and RPI respectively7                                    |
| Conductance histogram of Acetone                                                                                           |
| Figure S3. Conductance histogram of acetone solvent. It is seen that there is no peak observed in the conductance          |
| histogram                                                                                                                  |
| Conductance histogram of symmetric ZnII-5,15-di(4-hydorxyphenyl)porphyrin8                                                 |
| Figure S4. Molecular structure and conductance histogram of the symmetric porphyrin molecule Zn <sup>II</sup> -5,15-bis(4- |
| hydorxyphenyl)porphyrin (ZHPP)                                                                                             |
| Electrode Fabrication                                                                                                      |
| Figure S5. SEM images of the electrodes after electroplating. a) Gold electrodes after electroplating. b) Enlarged         |
| view of the area framed by the red rectangle in a)                                                                         |
| Gas phase DFT calculation                                                                                                  |
| Figure S6. Molecular orbital energy alignment of ZPI and RPI. The molecular orbitals were calculated using the             |
| functional / basis set B3LYP/6-311G of the program Gaussian 0910                                                           |
| NEGF-DFT calculation                                                                                                       |
| Figure S7. Molecular junction structures of (a)Au-ZPI-Au and (b)Au-RPI-Au                                                  |
| Figure S8. Transmission functions                                                                                          |
| Figure S9. Bias dependent transmission functions                                                                           |
| Three-site model analysis                                                                                                  |

| <i>Figure S10.</i> Current-voltage ( <i>IV</i> ) characteristic using the three-site model ( <i>z</i> =0)                                               | 16 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <i>Figure S11.</i> RR calculated by changing $\varepsilon res$ from $-0.9 \text{ eV}$ ( $z = 0 \text{ eV}$ ) to $0 \text{ eV}$ ( $z = 0.9 \text{ eV}$ ) | 16 |
| Dihedral Angle Dependence of Energy Porphyrin-imide Molecule                                                                                            | 17 |
| Figure S12. Dihedral angle dependence of relative energy porphyrin-imide molecule                                                                       |    |

#### Method

The single-molecule conductance of ZPI and RPI was obtained using an STM break junction (BJ) with Molecular Imaging Picoscan, Picoscan 5.3.3 software. A single-crystalline gold surface Au(111) on mica substrate was prepared by flame annealing. After that, the dilute solution of the sample with a concentration of about 1 mM in acetone solvent was immersed for one night. The gold STM tip from Au wire (99.99% and diameter of 0.25 nm) was cut and placed at the tip holder of STM-BJ. During the STM-BJ measurements, the Au tip was repeatedly brought into and out of contact with the substrate at room temperature. The conductance of the molecule was determined from the conductance histogram, which was built from thousands of conductance traces measured during the breaking process with an applied bias of 500 mV between the tip and substrate.

*I-V* curve measurements were conducted using mechanically controllable break junctions (MCBJ). The measurements were carried out using Au (50 nm)/Cr (5 nm) electrodes with a spacing of ~1  $\mu$ m; the electrodes were prepared by conventional photolithography combined with the lift-off technique on a thin phosphor bronze substrate (thickness: 100  $\mu$ m) covered by an insulated layer of polyimide. The spacing between the electrodes was reduced to establish contact by the electrodeposition of gold using a commercial solution (TEMPEREX 8400, Electroplating Engineers of Japan Ltd.). More details are provided in Supporting Information (Fig. S3). The diode molecules (ZPI or RPI) and the symmetric molecule were dissolved in acetone (~1 mM) and deposited on the electrodes. Measurements were carried out in vacuum at 300 K using an Agilent B1500A semiconductor device analyzer with high-resolution source measurement units. For each molecule, 6 electrodes were used and ca. 30 molecule junctions were successfully made to measure total ca. 500 *I-V* scans.

Because the molecule diodes in the experiments had the same linker groups (–OH groups) for both ends, the orientation of molecules in the junction during MCBJ measurements could not be controlled, and two different orientations of ZPI and RPI should have been present between the two electrodes. Figure S1 displays typical individual I-V curves of ZPI (Fig. S1a and b) and RPI (Fig. S1c and d), which are reasonably assigned to the molecules with different orientations. Here, we refer to the results, which show a higher conductance at positive bias as the forward orientation. Although from a statistical perspective, both directions should be observed equally, the probability of achieving a forward orientation was higher, simply because we set the instrumentations at +1.5 V (positive bias) to observe the expected conductance from the histogram. Ideally, the histograms shown in Fig. 1 should have two peaks corresponding to the forward and backward orientations. However, because of the very low conductance for the reversed bias, the smaller peaks could not be observed with the present instrumental setup.

# I-V curves measurement and Individual I–V curves of metal porphyrin–imide single-molecule diodes





Figure S1. Typical individual I-V curves of ZPI (I) and RPI (II).

Forward orientation and backward orientation of ZPI (red lines) and RPI (blue lines) are shown. The RR values corresponding to the selected individual I-V curve of ZPI for the forward orientations are 23 and 13, and those for the backward orientations are 23 and 17. The RR values of forward orientations for RPI are 11 and 10, and those for the backward orientations are 11 and 7.



*Figure S2.* (a) 2D Conductance histograms for ZPI constructed obtained from 1767 measurements of individual traces. (b) 2D Conductance histograms for RPI constructed from 4070 measurements of individual traces. Insets: structure of ZPI and RPI. (c-d) Selected individual traces of ZPI and RPI respectively

#### **Conductance histogram of Acetone**



*Figure S3.* Conductance histogram of acetone solvent. It is seen that there is no peak observed in the conductance histogram



#### Conductance histogram of symmetric ZnII-5,15-di(4-hydorxyphenyl)porphyrin

*Figure S4.* Molecular structure and conductance histogram of the symmetric porphyrin molecule Zn<sup>II</sup>-5,15-bis(4-hydorxyphenyl)porphyrin (ZHPP).

a) Single-molecule junction of Au–symmetric-molecule–Au. b) Conductance histogram of the symmetric molecule ZHPP ; the maximum conductance was  $6.9 \times 10-5$  G<sub>0</sub>.

#### **Electrode Fabrication**

The electrodes used for MCBJ measurements were patterned by photolithography on a substrate made of phosphor bronze covered with an insulating polyimide film. The photolithographic processes were performed at room temperature. A Cr/Au (5nm/50nm) layer was first formed on the substrate using electron-beam vapor deposition followed by treatment with lift-off solvents (60% dimethyl sulfoxide, 40% *N*-methyl-2-pyrrolidone). The size of the electrode gaps, measuring  $\sim$ 1 µm, were reduced by electroplating using a gold solution until gap contacts were established. Scanning electron microscope (SEM) images of the gaps are displayed at Fig. S5.



*Figure S5.* SEM images of the electrodes after electroplating. a) Gold electrodes after electroplating. b) Enlarged view of the area framed by the red rectangle in a).



*Figure S6*. Molecular orbital energy alignment of ZPI and RPI. The molecular orbitals were calculated using the functional / basis set B3LYP/6-311G of the program Gaussian 09.

#### **NEGF-DFT** calculation

The transport properties of the molecules were calculated by using the SMEAGOL code<sup>1-3</sup> based on the SIESTA package.<sup>4</sup> SMEAGOL employs the nonequilibrium Green's function method combined with density functional theory (NEGF-DFT). Double and single zeta plus polarization basis set was used for the molecule and Au atoms, respectively. Core electrons were described by the Troullier-Martins norm-conserving pseudopotential<sup>5</sup> with the Kleinman-Bylander nonlocal projector.<sup>6</sup> We used the Perdew-Burke-Ernzerhof (PBE)<sup>7</sup> exchange-correlation functional. The electrode was modeled as au Au(111) slab having  $p(6\times6)$  periodicity with the tip-like electrode surfaces as shown in Fig. S5. The oxygen atom is placed at the hollow site of the Au(111) surface. After the structures of the molecule and topmost two layers are optimized, we added the electrode layers and performed transport calculations.<sup>9</sup> The k-points were sampled by a 2×2×1 grid for the structural optimization and electronic structures and by an 8×8×1 grid for the transmission function and molecular projected self-consistent Hamiltonian (MPSH)<sup>9</sup> analysis. The positions of molecular orbitals in Figure 3 are extracted from the MPSH analysis under the finite bias.

Figure S8 shows the transmission functions of ZPI and RPI. Two curves are very similar but the small difference in the energy level alignment can be seen. The calculated zero-bias conductance is  $1.2 \times 10^{-5} G_0$  and  $7.0 \times 10^{-6} G_0$ , respectively. The slightly large conductance of ZPI is consistent with the higher HOMO level of ZPI shown in Fig. S6. The difference in the magnitude relation of the conductance values still remains to be resolved in future work. It is also known that the PBE functional predicts the porphyrin HOMO that is very close to the Fermi level of the Au electrode.<sup>8</sup> The higher threshold bias voltages predicted by the present NEGF-DFT calculations would be attributed to this error.

Figure S9 shows the bias dependent transmission functions for ZPI and RPI. The peak heights are very small at 0 V because the all MOs are localized, while sharp peaks due to resonance can be observed at high bias. The properties of peaks are summarized in Table S1.



Figure S7. Molecular junction structures of (a)Au-ZPI-Au and (b)Au-RPI-Au.



Figure S8. Transmission functions.



Figure S9. Bias dependent transmission functions.

*Table S1.* Properties of the resonance molecular orbitals. The position of the MO with respect to the Fermi level ( $E_{MO}$ ), the transmission value at  $E_{MO}$  ( $T(E_{MO})$ ), and the coupling product, where  $\gamma_{L/R}$  is the coupling between the MO and the left/right electrode.

|      |                      | Zn               |                                  |                      | Rh               |                                  |
|------|----------------------|------------------|----------------------------------|----------------------|------------------|----------------------------------|
| Bias | E <sub>MO</sub> (eV) | $T(E_{MO})(G_0)$ | $\sqrt{\gamma_L \gamma_R}$ (meV) | E <sub>MO</sub> (eV) | $T(E_{MO})(G_0)$ | $\sqrt{\gamma_L \gamma_R}$ (meV) |
| (V)  |                      |                  |                                  |                      |                  |                                  |
| -2.3 | -1.18                | 0.65             | 10.7                             | -1.16                | 0.84             | 14.7                             |
| 2.0  | -0.95                | 0.31             | 5.3                              | -1.01                | 0.13             | 3.6                              |
| 2.4  |                      |                  |                                  | -1.13                | 0.19             | 4.1                              |

#### Three-site model analysis

To investigate the possibility to improve the rectification ratio (RR) of our molecules, we constructed a three-site model. The voltage-dependent Hamiltonian of this model is given as

$$H(V) = \begin{pmatrix} \varepsilon_1 + z + \alpha_1 eV & -t_{12} & 0\\ -t_{12} & \varepsilon_2 + z + \alpha_2 e|V| & -t_{23}\\ 0 & -t_{23} & \varepsilon_3 + \alpha_3 eV \end{pmatrix},$$
(S1)

where V is the applied voltage, e the electron charge,  $\varepsilon$  the molecular orbital energy with respect to the Fermi energy, and t the coupling between orbitals. z is a variable to shift molecular orbitals of porphyrin and imide parts (we assume that those two parts are easier to be chemically modified). The retarted Green's function is given as

$$G^{r}(\varepsilon, V) = \left(\varepsilon I - H(V) - \Sigma_{L} - \Sigma_{R}\right)^{-1},$$
(S2)

where  $\Sigma_{L,R}$  are the self-energy matrices representing the left and right electrodes. By ignoring the real part of the self-energy (energy shift due to the coupling to the electrodes) and energy dependence of the coupling (wide-band limit),  $\Sigma_{L,R}$  can be simplified to

$$\Sigma_{L} = \begin{pmatrix} -i\Gamma/2 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}, \Sigma_{R} = \begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & -i\Gamma/2 \end{pmatrix}.$$
(S3)

Within the NEGF formalism, the transmission function  $T(\varepsilon, V)$  is given as

$$T(\varepsilon, V) = Tr[\Gamma_L G^r(\varepsilon, V) \Gamma_R G^a(\varepsilon, V)],$$
(S4)

Where  $G^r = G^{a\dagger}$  and  $\Gamma_{L/R} = i(\Sigma_{L/R} - \Sigma_{L/R}^{\dagger})$ . We calculated the current as

$$I(V) = \frac{2e}{h} \int_{-eV/2}^{+eV/2} T(\varepsilon, V) d\varepsilon$$
(S5)

Based on the NEGF-DFT results for ZPI, we set the parameters as follows:  $\epsilon_{1} = -0.6 \text{ eV}$ ,  $\epsilon_{2} = -1.35 \text{ eV}$ ,  $\epsilon_{3} = -0.41 \text{ eV}$ ,  $\alpha_{1} = -0.45$ ,  $\alpha_{2} = 0.2$ ,  $\alpha_{3} = 0.15$ ,  $t_{12} = t_{23} = 0.03 \text{ eV}$ , and  $\Gamma = 0.1 \text{ eV}$ . The calculated current-voltage (*IV*) characteristic is shown in Figure S10 well reproduced the *IV* curve calculated from NEGF-DFT: (i) the sharp rise of the current at around +2 V, (ii) very small but non-negligible peak at around +0.5 V, and (iii) the rise of the current at large negative bias due to the non-linear voltage dependence of  $\epsilon_{2}$ .

It has been indicated that the RR decreases rapidly for increasing the misalignment between the resonant orbital and the Fermi level.<sup>10</sup> As shown in Figure 3(c) in the main text, the energy of the resonance ( $\varepsilon_{res}$ ) is -0.9 eV for ZPI, which is away from the Fermi level. We calculated  $RR = I(V_{max})/I(-V_{max})$ , where  $V_{max}$  is the voltage where the current becomes the maximum, by changing the *z* value from 0 eV to 0.9 eV, which corresponds to changing  $\varepsilon_{res}$  from -0.9 eV to 0 eV. Figure S11 shows that, based on the three-site model, the RR of the *IV* curve shown in Figure S10 is ~5 and the maximum RR of ~420 can be achieved by shifting the energy levels of molecular orbitals. This maximum RR is smaller than that (~10<sup>6</sup>) predicted from a multi-site model,<sup>10</sup> because the current at the negative voltage due to the |*V*| dependence of  $\varepsilon_2$ , which was not considered in the previous model, reduces the RR.



*Figure S10.* Current-voltage (*IV*) characteristic using the three-site model (*z*=0).



*Figure S11.* RR calculated by changing  $\varepsilon_{res}$  from -0.9 eV (z = 0 eV) to 0 eV (z = 0.9 eV).

**Dihedral Angle Dependence of Energy Porphyrin-imide Molecule** 



Gaussian 09, DFT, B3LYP, 6-311G.

Boltzmann distribution:

$$P_A \propto e^{-\frac{E_{rel}}{RT}}$$

Where  $P_A$  is the probability of conformation with dihedral A,  $E_{rel}$  is the relative energy in J/mol of the conformation to the most stable conformation, R is the molar ideal gas constant which has value of 8.31 J/(mol•K), and T is temperature in kelvins (K).

Molecular structure was first optimized. Then the dihedral angle between porphyrin plane and imide porphyrin was changed to make new input files of every 5° in range of 5°-90°. The molecular energy was calculated without further optimizing the molecular structure. Relative energy is the energy relative to most stable structure (which has dihedral angle of 90°). Probability was calculated using Boltzmann Distribution at 298 K and normalized by dividing the total probability. Since the molecule structures with dihedral angle 95°-175° used same energy and probability as that with the of 85°-5° since they are symmetric.

Result was seen in figure 7 showing that at 298 K, the dihedral angel would have 80% to be from 80° to 100°, and more than 94% probability to be from 75° to 105°.



Figure S12. Dihedral angle dependence of relative energy porphyrin-imide molecule

1. A. R. Rocha, V. M. Garcia-Suarez, S. Bailey, C. Lambert, J. Ferrer and S. Sanvito, Phys. Rev. B. **73**, 085414 (2006).

2. I. Rungger and S. Sanvito, Phys. Rev. B. 78, 035407 (2008).

3. T. Ohto, I. Rungger, K. Yamashita, H. Nakamura and S. Sanvito, Phys. Rev. B. **87**, 205439 (2013).

4. J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon and D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745-2779 (2002).

- 5. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993-2006 (1991).
- 6. L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425-1428 (1982).

7. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865-3868 (1996).

8. Zhen-Fei Liu, Sujun Wei, Hongsik Yoon, Olgun Adak, Ingrid Ponce, Yivan Jiang, Woo-Dong Jang, Luis M. Campos, Latha Venkataraman, and Jeffrey B. Neaton, Nano Letters **14**, 5365-5370 (2014).

9. R. Yamada, K. Albrecht, T. Ohto, K. Minode, K. Yamamoto and H. Tada, Nanoscale, **10**, 19818-19824 (2018).

10. M. L. Perrin, M. Doelman, R. Eelkema, and H. S. J. van der Zant, Phys. Chem. Chem. Phys., **19**, 29187-29194 2017.

Input file for Zn

| SystemName  | transport calcula | tion # Descriptive name of the system |
|-------------|-------------------|---------------------------------------|
| SystemLabel | bu6               | # Short name for naming files         |

# Species and atoms

NumberOfSpecies 6 351 NumberOfAtoms %block ChemicalSpeciesLabel 1 1 Η 2 6 С 3 8 0 4 7 Ν 5 79 Au 6 30 Zn %endblock ChemicalSpeciesLabel

# Basis

| PAO  | .Energ  | yShift | 20 meV         |                                |
|------|---------|--------|----------------|--------------------------------|
| %blc | ock PA  | O.Basi | sSizes         |                                |
| Η    | DZP     |        |                |                                |
| С    | DZP     |        |                |                                |
| 0    | DZP     |        |                |                                |
| Ν    | DZP     |        |                |                                |
| Au   | SZP     |        |                |                                |
| Zn   | DZP     |        |                |                                |
| %en  | dblock  | PAO.E  | BasisSizes     |                                |
| Mesl | nCutof  | f      | 300. Ry        | # Mesh cutoff. real space mesh |
| # Kp | oints   |        |                |                                |
| %blc | ock kgr | rid_Mo | nkhorst_Pack   |                                |
| 2    | 0       | 0      | 0              |                                |
| 0    | 2       | 0      | 0              |                                |
| 0    | 0       | 1      | 0              |                                |
| %en  | dblock  | kgrid_ | Monkhorst_Pack |                                |

| # Function            |                     |                                             |
|-----------------------|---------------------|---------------------------------------------|
| xc.functional         | GGA                 | # Exchange-correlation functional           |
| xc.authors            | PBE                 | # Exchange-correlation version              |
| SpinPolarized         | .true.              | # Logical parameters are: yes or no         |
| # SCF options         |                     |                                             |
| MaxSCFIterations      | 1000                | # Maximum number of SCF iter                |
| DM.MixingWeight       | 0.001               | # New DM amount for next SCF cycle          |
| DM.Tolerance          | 1.d-4               | # Tolerance in maximum difference           |
|                       |                     | # between input and output DM               |
| #DM.UseSaveDM         | true                | # to use continuation files                 |
| DM.NumberPulay        | 5                   |                                             |
| SolutionMethod        | diagon              | # OrderN or Diagon                          |
| OccupationFunction    | FD                  | # FD or MP                                  |
| ElectronicTemperature | 200 K               | # Temp. for Fermi smearing                  |
| # MD options          |                     |                                             |
| MD.TypeOfRun          | cg                  | # Type of dynamics:                         |
| MD.NumCGsteps         | 0                   | # Number of CG steps for                    |
|                       |                     | # coordinate optimization                   |
| MD.MaxCGDispl         | 0.2 A               | ng # Maximum atomic displacement            |
|                       |                     | # in one CG step (Bohr)                     |
| MD.MaxForceTol        | 0.04 e <sup>v</sup> | V/Ang # Tolerance in the maximum            |
|                       |                     | # atomic force (Ry/Bohr)                    |
| MD.VariableCell       | .false.             |                                             |
| # ========            |                     |                                             |
| ##For Smeagol-trans   |                     |                                             |
| InitTransport F       | #reset "nsc         | process" as siesta or not, 'true' as siesta |
| EMTransport           | Т                   | #NEGF method or not                         |
| NSlices               | 1                   | # the number of layers for x in mx          |
| PeriodicTransp        | Т                   | #mx periodic calculation or not             |
| NEnergReal            | 0                   | # E-points for NE                           |
| NEnergImCircle        | 16                  | # E-points for EQ-Circle                    |
| NEnergImLine          | 16                  | # E-points for EQ-Line                      |
| NPoles                | 16                  | # E-points for EQ-Pole                      |

0.0 eV

VInitial

VFinal 0.0 eV **NIVPoints** 0 %block SaveBiasSteps 0 %endblock SaveBiasSteps #Fock shift Control(!!!!Vary Every Time while Smeagol-trans!!!!) -19.62229156 eV HartreeLeadsBottom # Matlab: VHplot('0.lead.VH') HartreeLeadsLeft 0.000 Ang #The mx's atomic z-coordinates of the corresponding 'HartreeLeadsBottom' position at left HartreeLeadsRight 0.000 Ang # The mx's atomic z-coordinates of the corresponding 'HartreeLeadsBottom' position at right ##Transport Output Flags #generate '\*.TRC' file or not TrCoefficients Т TransmissionOverk Т #generate '\*.TRC.k.up/down' file,containning infor about T(E,k) 512 **NTransmPoints** TRCScaleEf Т -4.0 eV InitTransmRange #(!!!!Vary Every Time with respect to lead's Ef while Smeagol-trans!!!!) FinalTransmRange 4.0 eV **SaveElectrostaticPotential** Т **SaveRHO** Т #Sensible parameters for structural change FullRamp Т MixHamiltonian T # F ReadHamiltonian T # F T # F DM.MixSCF1 Т DM.UseSaveDM **#Force Options EM.CalculateForces** Т EM.SetEBD Т WriteForces Т WriteCoorXmol Т # Write Atoms coordinates F WriteEigenvalues Sigma.SVDTolZero 1.0d-7 EM.Timings T Sigma.WriteToDisk F # Default value WriteCoorStep Т

# Structure

LatticeConstant 1.000 Ang

| / oblock Euclide / cotols |
|---------------------------|
|---------------------------|

| 0.00000000 0.0000000 63.96220989 | 7.21246913 | 12.49239770 | 0.0000000   |
|----------------------------------|------------|-------------|-------------|
|                                  | 0.00000000 | 0.00000000  | 63.96220989 |

%endblock LatticeVectors

# Atomic coordinates

| AtomicCoordin | atesFormat     | Ang            |       |
|---------------|----------------|----------------|-------|
| %block Atomic | CoordinatesAnd | dAtomicSpecies |       |
| 1.44249783    | 0.83282651     | 0.00000000 5 # | Au 1  |
| 4.32749350    | 0.83282651     | 0.00000000 5 # | Au 2  |
| 7.21248917    | 0.83282651     | 0.00000000 5 # | Au 3  |
| 10.09748484   | 0.83282651     | 0.00000000 5 # | Au 4  |
| 12.98248051   | 0.83282651     | 0.00000000 5 # | Au 5  |
| 2.88499566    | 3.33130605     | 0.00000000 5 # | Au 6  |
| 5.76999133    | 3.33130605     | 0.00000000 5 # | Au 7  |
| 8.65498700    | 3.33130605     | 0.00000000 5 # | Au 8  |
| 11.53998267   | 3.33130605     | 0.00000000 5 # | Au 9  |
| 14.42497834   | 3.33130605     | 0.00000000 5 # | Au 10 |
| 4.32749349    | 5.82978559     | 0.00000000 5 # | Au 11 |
| 7.21248916    | 5.82978559     | 0.00000000 5 # | Au 12 |
| 10.09748483   | 5.82978559     | 0.00000000 5 # | Au 13 |
| 12.98248050   | 5.82978559     | 0.00000000 5 # | Au 14 |
| 15.86747617   | 5.82978559     | 0.00000000 5 # | Au 15 |
| 5.76999132    | 8.32826513     | 0.00000000 5 # | Au 16 |
| 8.65498699    | 8.32826513     | 0.00000000 5 # | Au 17 |
| 11.53998266   | 8.32826513     | 0.00000000 5 # | Au 18 |
| 14.42497833   | 8.32826513     | 0.00000000 5 # | Au 19 |
| 17.30997400   | 8.32826513     | 0.00000000 5 # | Au 20 |
| 7.21248915    | 10.82674467    | 0.00000000 5 # | Au 21 |
| 10.09748482   | 10.82674467    | 0.00000000 5 # | Au 22 |
| 12.98248049   | 10.82674467    | 0.00000000 5 # | Au 23 |
| 15.86747616   | 10.82674467    | 0.00000000 5 # | Au 24 |
| 18.75247183   | 10.82674467    | 0.00000000 5 # | Au 25 |

| 0.00000000  | 0.00000000 | 2.35558910 5 # | Au 26 |
|-------------|------------|----------------|-------|
| 2.88499567  | 0.00000000 | 2.35558910 5 # | Au 27 |
| 5.76999134  | 0.00000000 | 2.35558910 5 # | Au 28 |
| 8.65498701  | 0.00000000 | 2.35558910 5 # | Au 29 |
| 11.53998268 | 0.00000000 | 2.35558910 5 # | Au 30 |
| 1.44249783  | 2.49847954 | 2.35558910 5 # | Au 31 |
| 4.32749350  | 2.49847954 | 2.35558910 5 # | Au 32 |
| 7.21248917  | 2.49847954 | 2.35558910 5 # | Au 33 |
| 10.09748484 | 2.49847954 | 2.35558910 5 # | Au 34 |
| 12.98248051 | 2.49847954 | 2.35558910 5 # | Au 35 |
| 2.88499566  | 4.99695908 | 2.35558910 5 # | Au 36 |
| 5.76999133  | 4.99695908 | 2.35558910 5 # | Au 37 |
| 8.65498700  | 4.99695908 | 2.35558910 5 # | Au 38 |
| 11.53998267 | 4.99695908 | 2.35558910 5 # | Au 39 |
| 14.42497834 | 4.99695908 | 2.35558910 5 # | Au 40 |
| 4.32749349  | 7.49543862 | 2.35558910 5 # | Au 41 |
| 7.21248916  | 7.49543862 | 2.35558910 5 # | Au 42 |
| 10.09748483 | 7.49543862 | 2.35558910 5 # | Au 43 |
| 12.98248050 | 7.49543862 | 2.35558910 5 # | Au 44 |
| 15.86747617 | 7.49543862 | 2.35558910 5 # | Au 45 |
| 5.76999132  | 9.99391816 | 2.35558910 5 # | Au 46 |
| 8.65498699  | 9.99391816 | 2.35558910 5 # | Au 47 |
| 11.53998266 | 9.99391816 | 2.35558910 5 # | Au 48 |
| 14.42497833 | 9.99391816 | 2.35558910 5 # | Au 49 |
| 17.30997400 | 9.99391816 | 2.35558910 5 # | Au 50 |
| 2.88499567  | 1.66565303 | 4.71117820 5 # | Au 51 |
| 5.76999134  | 1.66565303 | 4.71117820 5 # | Au 52 |
| 8.65498701  | 1.66565303 | 4.71117820 5 # | Au 53 |
| 11.53998268 | 1.66565303 | 4.71117820 5 # | Au 54 |
| 14.42497835 | 1.66565303 | 4.71117820 5 # | Au 55 |
| 4.32749350  | 4.16413257 | 4.71117820 5 # | Au 56 |
| 7.21248917  | 4.16413257 | 4.71117820 5 # | Au 57 |
| 10.09748484 | 4.16413257 | 4.71117820 5 # | Au 58 |
| 12.98248051 | 4.16413257 | 4.71117820 5 # | Au 59 |
| 15.86747618 | 4.16413257 | 4.71117820 5 # | Au 60 |
| 5.76999133  | 6.66261211 | 4.71117820 5 # | Au 61 |
| 8.65498700  | 6.66261211 | 4.71117820 5 # | Au 62 |

| 11.53998267 | 6.66261211  | 4.71117820 5 # | Au 63 |
|-------------|-------------|----------------|-------|
| 14.42497834 | 6.66261211  | 4.71117820 5 # | Au 64 |
| 17.30997401 | 6.66261211  | 4.71117820 5 # | Au 65 |
| 7.21248916  | 9.16109165  | 4.71117820 5 # | Au 66 |
| 10.09748483 | 9.16109165  | 4.71117820 5 # | Au 67 |
| 12.98248050 | 9.16109165  | 4.71117820 5 # | Au 68 |
| 15.86747617 | 9.16109165  | 4.71117820 5 # | Au 69 |
| 18.75247184 | 9.16109165  | 4.71117820 5 # | Au 70 |
| 8.65498699  | 11.65957119 | 4.71117820 5 # | Au 71 |
| 11.53998266 | 11.65957119 | 4.71117820 5 # | Au 72 |
| 14.42497833 | 11.65957119 | 4.71117820 5 # | Au 73 |
| 17.30997400 | 11.65957119 | 4.71117820 5 # | Au 74 |
| 20.19496967 | 11.65957119 | 4.71117820 5 # | Au 75 |
| 1.44249783  | 0.83282651  | 7.06676730 5 # | Au 76 |
| 4.32749350  | 0.83282651  | 7.06676730 5 # | Au 77 |
| 7.21248917  | 0.83282651  | 7.06676730 5 # | Au 78 |
| 10.09748484 | 0.83282651  | 7.06676730 5 # | Au 79 |
| 12.98248051 | 0.83282651  | 7.06676730 5 # | Au 80 |
| 2.88499566  | 3.33130605  | 7.06676730 5 # | Au 81 |
| 5.76999133  | 3.33130605  | 7.06676730 5 # | Au 82 |
| 8.65498700  | 3.33130605  | 7.06676730 5 # | Au 83 |
| 11.53998267 | 3.33130605  | 7.06676730 5 # | Au 84 |
| 14.42497834 | 3.33130605  | 7.06676730 5 # | Au 85 |
| 4.32749349  | 5.82978559  | 7.06676730 5 # | Au 86 |
| 7.21248916  | 5.82978559  | 7.06676730 5 # | Au 87 |
| 10.09748483 | 5.82978559  | 7.06676730 5 # | Au 88 |
| 12.98248050 | 5.82978559  | 7.06676730 5 # | Au 89 |
| 15.86747617 | 5.82978559  | 7.06676730 5 # | Au 90 |
| 5.76999132  | 8.32826513  | 7.06676730 5 # | Au 91 |
| 8.65498699  | 8.32826513  | 7.06676730 5 # | Au 92 |
| 11.53998266 | 8.32826513  | 7.06676730 5 # | Au 93 |
| 14.42497833 | 8.32826513  | 7.06676730 5 # | Au 94 |
| 17.30997400 | 8.32826513  | 7.06676730 5 # | Au 95 |
| 7.21248915  | 10.82674467 | 7.06676730 5 # | Au 96 |
| 10.09748482 | 10.82674467 | 7.06676730 5 # | Au 97 |
| 12.98248049 | 10.82674467 | 7.06676730 5 # | Au 98 |
| 15.86747616 | 10.82674467 | 7.06676730 5 # | Au 99 |

| 18.75247183 | 10.82674467 | 7.06676730 5 #  | Au 100 |
|-------------|-------------|-----------------|--------|
| 0.00000000  | 0.00000000  | 9.42235639 5 #  | Au 101 |
| 2.88499567  | 0.00000000  | 9.42235639 5 #  | Au 102 |
| 5.76999134  | 0.00000000  | 9.42235639 5 #  | Au 103 |
| 8.65498701  | 0.00000000  | 9.42235639 5 #  | Au 104 |
| 11.53998268 | 0.00000000  | 9.42235639 5 #  | Au 105 |
| 1.44249783  | 2.49847954  | 9.42235639 5 #  | Au 106 |
| 4.32749350  | 2.49847954  | 9.42235639 5 #  | Au 107 |
| 7.21248917  | 2.49847954  | 9.42235639 5 #  | Au 108 |
| 10.09748484 | 2.49847954  | 9.42235639 5 #  | Au 109 |
| 12.98248051 | 2.49847954  | 9.42235639 5 #  | Au 110 |
| 2.88499566  | 4.99695908  | 9.42235639 5 #  | Au 111 |
| 5.76999133  | 4.99695908  | 9.42235639 5 #  | Au 112 |
| 8.65498700  | 4.99695908  | 9.42235639 5 #  | Au 113 |
| 11.53998267 | 4.99695908  | 9.42235639 5 #  | Au 114 |
| 14.42497834 | 4.99695908  | 9.42235639 5 #  | Au 115 |
| 4.32749349  | 7.49543862  | 9.42235639 5 #  | Au 116 |
| 7.21248916  | 7.49543862  | 9.42235639 5 #  | Au 117 |
| 10.09748483 | 7.49543862  | 9.42235639 5 #  | Au 118 |
| 12.98248050 | 7.49543862  | 9.42235639 5 #  | Au 119 |
| 15.86747617 | 7.49543862  | 9.42235639 5 #  | Au 120 |
| 5.76999132  | 9.99391816  | 9.42235639 5 #  | Au 121 |
| 8.65498699  | 9.99391816  | 9.42235639 5 #  | Au 122 |
| 11.53998266 | 9.99391816  | 9.42235639 5 #  | Au 123 |
| 14.42497833 | 9.99391816  | 9.42235639 5 #  | Au 124 |
| 17.30997400 | 9.99391816  | 9.42235639 5 #  | Au 125 |
| 2.93197743  | 1.69663115  | 11.78565460 5 # | Au 126 |
| 11.49206203 | 1.69672069  | 11.78522315 5 # | Au 127 |
| 14.42475447 | 2.00773149  | 11.81028498 5 # | Au 128 |
| 7.21238432  | 9.14054820  | 11.79973714 5 # | Au 129 |
| 8.91072652  | 11.52535152 | 11.81811736 5 # | Au 130 |
| 19.93705553 | 11.52415883 | 11.81797929 5 # | Au 131 |
| 1.47797642  | 0.89350347  | 13.98880772 5 # | Au 132 |
| 12.94588429 | 0.89252017  | 13.98761821 5 # | Au 133 |
| 7.21142273  | 10.81209526 | 14.01616367 5 # | Au 134 |
| 0.00336048  | -0.00715425 | 15.93380569 3 # | O 135  |
| 0.00297370  | 0.01709474  | 17.27053930 2 # | C 136  |

| -0.01721298 | -2.15866591 | 17.50155272 1 # | H 137  |
|-------------|-------------|-----------------|--------|
| 0.02368289  | 2.20243950  | 17.417378591#   | H 138  |
| 0.01364264  | 1.25814495  | 17.99681853 2 # | C 139  |
| -0.00874481 | -1.19237661 | 18.04445735 2 # | C 140  |
| 0.01192491  | 1.28597023  | 19.39556931 2 # | C 141  |
| -0.00957905 | -1.16300024 | 19.44358346 2 # | C 142  |
| 0.02003033  | 2.26047121  | 19.92271529 1 # | Н 143  |
| -0.01894257 | -2.11473605 | 20.00981437 1 # | H 144  |
| 0.00067145  | 0.07572170  | 20.16655492 2 # | C 145  |
| 0.00050535  | 0.09933521  | 21.59920309 2 # | C 146  |
| 0.00099212  | 0.11138014  | 22.84986877 2 # | C 147  |
| -0.04451280 | 2.83763806  | 23.21012294 1 # | H 148  |
| 0.04216094  | -2.61302847 | 23.21264648 1 # | H 149  |
| -0.03468241 | 2.68457610  | 24.30232926 2 # | C 150  |
| 0.03546480  | -2.45809237 | 24.30466324 2 # | C 151  |
| 0.00179281  | 0.11400257  | 24.28284844 2 # | C 152  |
| -0.01356871 | 1.38842411  | 24.96245146 2 # | C 153  |
| 0.01767914  | -1.16054553 | 24.96271128 2 # | C 154  |
| -0.05620783 | 4.74036564  | 25.18698005 1 # | Н 155  |
| 0.05459655  | -4.51227682 | 25.19349591 1 # | H 156  |
| -0.04033637 | 3.64246201  | 25.30108964 2 # | C 157  |
| 0.04152209  | -3.41402418 | 25.30513547 2 # | C 158  |
| -0.00790659 | 1.56081726  | 26.33430001 4 # | N 159  |
| 0.01450167  | -1.33050701 | 26.33441270 4 # | N 160  |
| -0.02137257 | 2.92825023  | 26.56862509 2 # | C 161  |
| 0.02683224  | -2.69726189 | 26.57134441 2 # | C 162  |
| -0.02402982 | 4.64992636  | 27.84263246 1 # | H 163  |
| -0.01327579 | 3.54278581  | 27.84420436 2 # | C 164  |
| 0.00676375  | 0.11743285  | 27.84650211 6 # | Zn 165 |
| 0.02640131  | -4.41593830 | 27.85034868 1 # | H 166  |
| 0.02024340  | -3.30865515 | 27.84837278 2 # | C 167  |
| 0.00440290  | 2.92855261  | 29.12096781 2 # | C 168  |
| 0.00612501  | -2.69049434 | 29.12322604 2 # | C 169  |
| 0.01124581  | 1.56502445  | 29.35312179 4 # | N 170  |
| 0.00584637  | -1.32600673 | 29.35250150 4 # | N 171  |
| 0.00924941  | 3.64340787  | 30.38990155 2 # | C 172  |
| -0.00649807 | -3.40272329 | 30.39332449 2 # | C 173  |

| 0.00776817  | 4.74151483  | 30.50394225 1 # | H 174 |
|-------------|-------------|-----------------|-------|
| -0.01169991 | -4.50056865 | 30.50911728 1 # | Н 175 |
| 0.01240218  | 1.38800406  | 30.72717874 2 # | C 176 |
| -0.00234449 | -1.14681728 | 30.72673017 2 # | C 177 |
| 0.00374366  | 0.12061716  | 31.37797495 2 # | C 178 |
| 0.01444137  | 2.68762801  | 31.38908364 2 # | C 179 |
| -0.01227585 | -2.44510640 | 31.39074543 2 # | C 180 |
| 0.01807882  | 2.85690538  | 32.478747991#   | H 181 |
| -0.02278691 | -2.61227949 | 32.48068387 1 # | H 182 |
| 0.00122355  | 0.12048162  | 32.83636212 4 # | N 183 |
| 2.31934153  | 0.09457390  | 32.84982603 3 # | O 184 |
| -2.31720540 | 0.12737744  | 32.84730253 3 # | O 185 |
| 1.26679115  | 0.10520836  | 33.49704534 2 # | C 186 |
| -1.26546864 | 0.12430184  | 33.49550144 2 # | C 187 |
| 1.24126852  | 0.10270651  | 35.00150902 2 # | C 188 |
| -1.24133492 | 0.12390428  | 35.00044711 2 # | C 189 |
| 3.39736695  | 0.08167474  | 35.15023102 1 # | H 190 |
| -3.39792617 | 0.14127741  | 35.14874853 1 # | H 191 |
| -0.00030223 | 0.11347485  | 35.70753381 2 # | C 192 |
| 2.44833456  | 0.09052910  | 35.72125840 2 # | C 193 |
| -2.44883847 | 0.13338186  | 35.71977592 2 # | C 194 |
| 2.44672446  | 0.09027731  | 37.14223494 2 # | C 195 |
| -2.44785085 | 0.13273672  | 37.14086509 2 # | C 196 |
| -0.00062454 | 0.11305352  | 37.14812376 2 # | C 197 |
| 3.39430661  | 0.08121821  | 37.71544494 1 # | H 198 |
| -3.39581904 | 0.13992379  | 37.71356458 1 # | H 199 |
| 1.23805008  | 0.10204619  | 37.85817467 2 # | C 200 |
| -1.23960589 | 0.12269727  | 37.85765758 2 # | C 201 |
| 1.26021085  | 0.10390031  | 39.36612963 2 # | C 202 |
| -1.26202340 | 0.12156727  | 39.36577980 2 # | C 203 |
| 2.31863031  | 0.09319620  | 40.00467863 3 # | O 204 |
| -2.32058023 | 0.12324125  | 40.00408423 3 # | O 205 |
| -0.00089177 | 0.11801035  | 40.02841985 4 # | N 206 |
| -0.00084915 | 0.11584650  | 41.48798147 2 # | C 207 |
| -0.00679582 | -2.06293067 | 41.64677133 1 # | H 208 |
| 0.00558274  | 2.29329489  | 41.65714964 1 # | H 209 |
| -0.00405955 | -1.10436863 | 42.20239816 2 # | C 210 |

| 0.00283958  | 1.33187205  | 42.20779091 2 # | C 211  |
|-------------|-------------|-----------------|--------|
| -0.00377612 | -1.11150510 | 43.60945372 2 # | C 212  |
| 0.00305253  | 1.33086558  | 43.61646440 2 # | C 213  |
| -0.00628733 | -2.07217393 | 44.16155305 1 # | H 214  |
| 0.00588321  | 2.28839726  | 44.17420816 1 # | H 215  |
| -0.00031889 | 0.10828995  | 44.35570868 2 # | C 216  |
| -0.00020675 | 0.09157705  | 45.71592843 3 # | O 217  |
| 14.42529459 | 1.71316922  | 47.56276401 5 # | Au 218 |
| 8.69092550  | 11.61068036 | 47.59763403 5 # | Au 219 |
| 20.15937948 | 11.61076836 | 47.59744069 5 # | Au 220 |
| 1.66944516  | 0.95824370  | 49.78710584 5 # | Au 221 |
| 12.75578731 | 0.95821746  | 49.78705219 5 # | Au 222 |
| 14.42500502 | 3.35685398  | 49.79814154 5 # | Au 223 |
| 7.21255218  | 10.51551368 | 49.79142551 5 # | Au 224 |
| 10.13805113 | 10.79870190 | 49.81365582 5 # | Au 225 |
| 18.71215255 | 10.79881632 | 49.81352117 5 # | Au 226 |
| 0.00000000  | 0.00000000  | 52.18426440 5 # | Au 227 |
| 2.88499572  | 0.00000000  | 52.18426440 5 # | Au 228 |
| 5.76999145  | 0.00000000  | 52.18426440 5 # | Au 229 |
| 8.65498717  | 0.00000000  | 52.18426440 5 # | Au 230 |
| 11.53998290 | 0.00000000  | 52.18426440 5 # | Au 231 |
| 1.44249786  | 2.49847959  | 52.18426440 5 # | Au 232 |
| 4.32749358  | 2.49847959  | 52.18426440 5 # | Au 233 |
| 7.21248931  | 2.49847959  | 52.18426440 5 # | Au 234 |
| 10.09748503 | 2.49847959  | 52.18426440 5 # | Au 235 |
| 12.98248076 | 2.49847959  | 52.18426440 5 # | Au 236 |
| 2.88499571  | 4.99695918  | 52.18426440 5 # | Au 237 |
| 5.76999144  | 4.99695918  | 52.18426440 5 # | Au 238 |
| 8.65498716  | 4.99695918  | 52.18426440 5 # | Au 239 |
| 11.53998289 | 4.99695918  | 52.18426440 5 # | Au 240 |
| 14.42497861 | 4.99695918  | 52.18426440 5 # | Au 241 |
| 4.32749357  | 7.49543876  | 52.18426440 5 # | Au 242 |
| 7.21248930  | 7.49543876  | 52.18426440 5 # | Au 243 |
| 10.09748502 | 7.49543876  | 52.18426440 5 # | Au 244 |
| 12.98248075 | 7.49543876  | 52.18426440 5 # | Au 245 |
| 15.86747647 | 7.49543876  | 52.18426440 5 # | Au 246 |
| 5.76999143  | 9.99391835  | 52.18426440 5 # | Au 247 |

| 8.65498715  | 9.99391835  | 52.18426440 5 # | Au 248 |
|-------------|-------------|-----------------|--------|
| 11.53998288 | 9.99391835  | 52.18426440 5 # | Au 249 |
| 14.42497860 | 9.99391835  | 52.18426440 5 # | Au 250 |
| 17.30997433 | 9.99391835  | 52.18426440 5 # | Au 251 |
| 2.88499572  | 1.66565306  | 54.53985355 5 # | Au 252 |
| 5.76999145  | 1.66565306  | 54.53985355 5 # | Au 253 |
| 8.65498717  | 1.66565306  | 54.53985355 5 # | Au 254 |
| 11.53998290 | 1.66565306  | 54.53985355 5 # | Au 255 |
| 14.42497862 | 1.66565306  | 54.53985355 5 # | Au 256 |
| 4.32749358  | 4.16413265  | 54.53985355 5 # | Au 257 |
| 7.21248931  | 4.16413265  | 54.53985355 5 # | Au 258 |
| 10.09748503 | 4.16413265  | 54.53985355 5 # | Au 259 |
| 12.98248076 | 4.16413265  | 54.53985355 5 # | Au 260 |
| 15.86747648 | 4.16413265  | 54.53985355 5 # | Au 261 |
| 5.76999144  | 6.66261224  | 54.53985355 5 # | Au 262 |
| 8.65498716  | 6.66261224  | 54.53985355 5 # | Au 263 |
| 11.53998289 | 6.66261224  | 54.53985355 5 # | Au 264 |
| 14.42497861 | 6.66261224  | 54.53985355 5 # | Au 265 |
| 17.30997434 | 6.66261224  | 54.53985355 5 # | Au 266 |
| 7.21248930  | 9.16109182  | 54.53985355 5 # | Au 267 |
| 10.09748502 | 9.16109182  | 54.53985355 5 # | Au 268 |
| 12.98248075 | 9.16109182  | 54.53985355 5 # | Au 269 |
| 15.86747647 | 9.16109182  | 54.53985355 5 # | Au 270 |
| 18.75247220 | 9.16109182  | 54.53985355 5 # | Au 271 |
| 8.65498715  | 11.65957141 | 54.53985355 5 # | Au 272 |
| 11.53998288 | 11.65957141 | 54.53985355 5 # | Au 273 |
| 14.42497860 | 11.65957141 | 54.53985355 5 # | Au 274 |
| 17.30997433 | 11.65957141 | 54.53985355 5 # | Au 275 |
| 20.19497005 | 11.65957141 | 54.53985355 5 # | Au 276 |
| 1.44249783  | 0.83282651  | 56.89544260 5 # | Au 277 |
| 4.32749350  | 0.83282651  | 56.89544260 5 # | Au 278 |
| 7.21248917  | 0.83282651  | 56.89544260 5 # | Au 279 |
| 10.09748484 | 0.83282651  | 56.89544260 5 # | Au 280 |
| 12.98248051 | 0.83282651  | 56.89544260 5 # | Au 281 |
| 2.88499566  | 3.33130605  | 56.89544260 5 # | Au 282 |
| 5.76999133  | 3.33130605  | 56.89544260 5 # | Au 283 |
| 8.65498700  | 3.33130605  | 56.89544260 5 # | Au 284 |

| 11.53998267 | 3.33130605  | 56.89544260 5 # | Au 285 |
|-------------|-------------|-----------------|--------|
| 14.42497834 | 3.33130605  | 56.89544260 5 # | Au 286 |
| 4.32749349  | 5.82978559  | 56.89544260 5 # | Au 287 |
| 7.21248916  | 5.82978559  | 56.89544260 5 # | Au 288 |
| 10.09748483 | 5.82978559  | 56.89544260 5 # | Au 289 |
| 12.98248050 | 5.82978559  | 56.89544260 5 # | Au 290 |
| 15.86747617 | 5.82978559  | 56.89544260 5 # | Au 291 |
| 5.76999132  | 8.32826513  | 56.89544260 5 # | Au 292 |
| 8.65498699  | 8.32826513  | 56.89544260 5 # | Au 293 |
| 11.53998266 | 8.32826513  | 56.89544260 5 # | Au 294 |
| 14.42497833 | 8.32826513  | 56.89544260 5 # | Au 295 |
| 17.30997400 | 8.32826513  | 56.89544260 5 # | Au 296 |
| 7.21248915  | 10.82674467 | 56.89544260 5 # | Au 297 |
| 10.09748482 | 10.82674467 | 56.89544260 5 # | Au 298 |
| 12.98248049 | 10.82674467 | 56.89544260 5 # | Au 299 |
| 15.86747616 | 10.82674467 | 56.89544260 5 # | Au 300 |
| 18.75247183 | 10.82674467 | 56.89544260 5 # | Au 301 |
| 0.00000000  | 0.00000000  | 59.25103169 5 # | Au 302 |
| 2.88499567  | 0.00000000  | 59.25103169 5 # | Au 303 |
| 5.76999134  | 0.00000000  | 59.25103169 5 # | Au 304 |
| 8.65498701  | 0.00000000  | 59.25103169 5 # | Au 305 |
| 11.53998268 | 0.00000000  | 59.25103169 5 # | Au 306 |
| 1.44249783  | 2.49847954  | 59.25103169 5 # | Au 307 |
| 4.32749350  | 2.49847954  | 59.25103169 5 # | Au 308 |
| 7.21248917  | 2.49847954  | 59.25103169 5 # | Au 309 |
| 10.09748484 | 2.49847954  | 59.25103169 5 # | Au 310 |
| 12.98248051 | 2.49847954  | 59.25103169 5 # | Au 311 |
| 2.88499566  | 4.99695908  | 59.25103169 5 # | Au 312 |
| 5.76999133  | 4.99695908  | 59.25103169 5 # | Au 313 |
| 8.65498700  | 4.99695908  | 59.25103169 5 # | Au 314 |
| 11.53998267 | 4.99695908  | 59.25103169 5 # | Au 315 |
| 14.42497834 | 4.99695908  | 59.25103169 5 # | Au 316 |
| 4.32749349  | 7.49543862  | 59.25103169 5 # | Au 317 |
| 7.21248916  | 7.49543862  | 59.25103169 5 # | Au 318 |
| 10.09748483 | 7.49543862  | 59.25103169 5 # | Au 319 |
| 12.98248050 | 7.49543862  | 59.25103169 5 # | Au 320 |
| 15.86747617 | 7.49543862  | 59.25103169 5 # | Au 321 |

| 5.76999132   | 9.99391816      | 59.25103169 5 # | Au 322 |
|--------------|-----------------|-----------------|--------|
| 8.65498699   | 9.99391816      | 59.25103169 5 # | Au 323 |
| 11.53998266  | 9.99391816      | 59.25103169 5 # | Au 324 |
| 14.42497833  | 9.99391816      | 59.25103169 5 # | Au 325 |
| 17.30997400  | 9.99391816      | 59.25103169 5 # | Au 326 |
| 2.88499567   | 1.66565303      | 61.60662079 5 # | Au 327 |
| 5.76999134   | 1.66565303      | 61.60662079 5 # | Au 328 |
| 8.65498701   | 1.66565303      | 61.60662079 5 # | Au 329 |
| 11.53998268  | 1.66565303      | 61.60662079 5 # | Au 330 |
| 14.42497835  | 1.66565303      | 61.60662079 5 # | Au 331 |
| 4.32749350   | 4.16413257      | 61.60662079 5 # | Au 332 |
| 7.21248917   | 4.16413257      | 61.60662079 5 # | Au 333 |
| 10.09748484  | 4.16413257      | 61.60662079 5 # | Au 334 |
| 12.98248051  | 4.16413257      | 61.60662079 5 # | Au 335 |
| 15.86747618  | 4.16413257      | 61.60662079 5 # | Au 336 |
| 5.76999133   | 6.66261211      | 61.60662079 5 # | Au 337 |
| 8.65498700   | 6.66261211      | 61.60662079 5 # | Au 338 |
| 11.53998267  | 6.66261211      | 61.60662079 5 # | Au 339 |
| 14.42497834  | 6.66261211      | 61.60662079 5 # | Au 340 |
| 17.30997401  | 6.66261211      | 61.60662079 5 # | Au 341 |
| 7.21248916   | 9.16109165      | 61.60662079 5 # | Au 342 |
| 10.09748483  | 9.16109165      | 61.60662079 5 # | Au 343 |
| 12.98248050  | 9.16109165      | 61.60662079 5 # | Au 344 |
| 15.86747617  | 9.16109165      | 61.60662079 5 # | Au 345 |
| 18.75247184  | 9.16109165      | 61.60662079 5 # | Au 346 |
| 8.65498699   | 11.65957119     | 61.60662079 5 # | Au 347 |
| 11.53998266  | 11.65957119     | 61.60662079 5 # | Au 348 |
| 14.42497833  | 11.65957119     | 61.60662079 5 # | Au 349 |
| 17.30997400  | 11.65957119     | 61.60662079 5 # | Au 350 |
| 20.19496967  | 11.65957119     | 61.60662079 5 # | Au 351 |
| / 11 1 1 4 / | · <b>O</b> 1. ( | A 1A4 ' C '     |        |

 $\label{eq:condition} \ensuremath{\text{\sc block}}\xspace{\sc block} AtomicCoordinatesAndAtomicSpecies$ 

Input file for Rh

| SystemName  | transport calcula | tion # Descriptive name of the system |
|-------------|-------------------|---------------------------------------|
| SystemLabel | bu6               | # Short name for naming files         |

# Species and atoms

NumberOfSpecies 7 352 NumberOfAtoms %block ChemicalSpeciesLabel 1 1 Η 2 6 С 8 3 0 4 7 Ν 79 5 Au

- 6 45 Rh
- 7 53 I

%endblock ChemicalSpeciesLabel

# Basis

PAO.EnergyShift 20 meV %block PAO.BasisSizes DZP Η С DZP DZP Ο DZP Ν SZP Au Rh DZP DZP I %endblock PAO.BasisSizes MeshCutoff 300. Ry # Mesh cutoff. real space mesh # Kpoints %block kgrid\_Monkhorst\_Pack 2 0 0 0 0 2 0 0

0 0 1 0

| # Function            |               |                                     |
|-----------------------|---------------|-------------------------------------|
| xc.functional         | GGA           | # Exchange-correlation functional   |
| xc.authors            | PBE           | # Exchange-correlation version      |
| SpinPolarized         | .true.        | # Logical parameters are: yes or no |
| # SCF options         |               |                                     |
| MaxSCFIterations      | 1000          | # Maximum number of SCF iter        |
| DM.MixingWeight       | 0.001         | # New DM amount for next SCF cycle  |
| DM.Tolerance          | 1. <b>d-4</b> | # Tolerance in maximum difference   |
|                       |               | # between input and output DM       |
| #DM.UseSaveDM         | true          | # to use continuation files         |
| DM.NumberPulay        | 5             |                                     |
| SolutionMethod        | diagon        | # OrderN or Diagon                  |
| OccupationFunction    | FD            | # FD or MP                          |
| ElectronicTemperature | 200 K         | # Temp. for Fermi smearing          |
| # MD options          |               |                                     |
| MD.TypeOfRun          | cg            | # Type of dynamics:                 |
| MD.NumCGsteps         | 0             | # Number of CG steps for            |
|                       |               | # coordinate optimization           |
| MD.MaxCGDispl         | 0.2 Ang       | g # Maximum atomic displacement     |
|                       |               | # in one CG step (Bohr)             |
| MD.MaxForceTol        | 0.04 eV/      | Ang # Tolerance in the maximum      |
|                       |               | # atomic force (Ry/Bohr)            |
| MD.VariableCell       | .false.       |                                     |

##For Smeagol-trans

# =======

| InitTransport F  | #reset "nsc process" as siesta or not, 'true' as siesta |  |  |
|------------------|---------------------------------------------------------|--|--|
| EMTransport      | T #NEGF method or not                                   |  |  |
| NSlices          | 1 # the number of layers for x in mx                    |  |  |
| PeriodicTransp   | T #mx periodic calculation or not                       |  |  |
| NEnergReal       | 0 # E-points for NE                                     |  |  |
| NEnergImCircle   | 16 # E-points for EQ-Circle                             |  |  |
| NEnergImLine     | 16 # E-points for EQ-Line                               |  |  |
| NPoles           | 16 # E-points for EQ-Pole                               |  |  |
| Delta            | 1.d-4                                                   |  |  |
| EnergLowestBound | -6.0d0 Ry # Absolute value                              |  |  |

| #Bias Setup                 |                                                                   |
|-----------------------------|-------------------------------------------------------------------|
| VInitial                    | 0.0 eV                                                            |
| VFinal                      | 0.0 eV                                                            |
| NIVPoints                   | 0                                                                 |
| %block SaveBiasSteps        |                                                                   |
| 0                           |                                                                   |
| %endblock SaveBiasSteps     |                                                                   |
| #Fock shift Control(!!!!Var | y Every Time while Smeagol-trans!!!!)                             |
| HartreeLeadsBottom          | -19.62229156 eV # Matlab: VHplot('0.lead.VH')                     |
| HartreeLeadsLeft            | 0.000 Ang #The mx's atomic z-coordinates of the                   |
| corresponding 'HartreeLead  | lsBottom' position at left                                        |
| HartreeLeadsRight           | 0.000 Ang # The mx's atomic z-coordinates of the                  |
| corresponding 'HartreeLead  | lsBottom' position at right                                       |
| ##Transport Output Flags    |                                                                   |
| TrCoefficients              | T #generate '*.TRC' file or not                                   |
| TransmissionOverk           | T #generate '*.TRC.k.up/down' file,containning infor about T(E,k) |
| NTransmPoints               | 512                                                               |
| TRCScaleEf T                |                                                                   |
| InitTransmRange             | -4.0 eV #(!!!!Vary Every Time with respect to lead's Ef while     |
| Smeagol-trans!!!!)          |                                                                   |
| FinalTransmRange            | 4.0 eV                                                            |
| SaveElectrostaticPotential  | Т                                                                 |
| SaveRHO T                   |                                                                   |
| #Sensible parameters for st | ructural change                                                   |
| FullRamp T                  |                                                                   |
| MixHamiltonian T # 1        | F                                                                 |
| ReadHamiltonian T # H       |                                                                   |
| DM.MixSCF1 T                | # F                                                               |
| DM.UseSaveDM T              |                                                                   |
| #Force Options              |                                                                   |
| EM.CalculateForces          | Т                                                                 |
| EM.SetEBD T                 |                                                                   |
| WriteForces T               |                                                                   |
| WriteCoorXmol T             | # Write Atoms coordinates                                         |
| WriteEigenvalues            | F                                                                 |
| Sigma.SVDTolZero 1.0d-      | -7                                                                |
| EM.Timings T                |                                                                   |

F Sigma.WriteToDisk # Default value WriteCoorStep Т # Structure LatticeConstant 1.000 Ang %block LatticeVectors 14.42497835 0.00000000 0.00000000 7.21248915 12.49239770 0.00000000 0.00000000 0.00000000 63.95264230 %endblock LatticeVectors # Atomic coordinates AtomicCoordinatesFormat Ang %block AtomicCoordinatesAndAtomicSpecies 1.44249783 0.83282651 0.000000005 # 4.32749350 0.83282651 0.000000005 # 0.000000005 # 7.21248917 0.83282651 10.09748484 0.83282651 0.00000000 5 # 12.98248051 0.83282651 0.000000005 # 2.88499566 3.33130605 0.00000000 5 # 5.76999133 3.33130605 0.00000000 5 # 0.000000005 # 8.65498700 3.33130605 11.53998267 3.33130605 0.00000000 5 # 14.42497834 0.00000000 5 # 3.33130605 4.32749349 5.82978559 0.00000000 5 # 7.21248916 5.82978559 0.000000005 # 10.09748483 5.82978559 0.00000000 5 # 12.98248050 0.00000000 5 # 5.82978559 15.86747617 5.82978559 0.000000005 # 5.76999132 8.32826513 0.00000000 5 # 8.65498699 8.32826513 0.00000000 5 # 11.53998266 8.32826513 0.000000005 # 14.42497833 8.32826513 0.000000005 # 17.30997400 8.32826513 0.00000000 5 # 7.21248915 10.82674467 0.00000000 5 # 10.09748482 10.82674467 0.000000005 # 12.98248049 10.82674467 0.000000005 #

Au 1

Au 2

Au 3

Au 4

Au 5

Au 6

Au 7

Au 8

Au 9

Au 10

Au 11

Au 12

Au 13

Au 14

Au 15

Au 16

Au 17

Au 18

Au 19

Au 20

Au 21

Au 22

Au 23

| 15.86747616 | 10.82674467 | 0.00000000 5 # | Au 24 |
|-------------|-------------|----------------|-------|
| 18.75247183 | 10.82674467 | 0.00000000 5 # | Au 25 |
| 0.00000000  | 0.00000000  | 2.35558910 5 # | Au 26 |
| 2.88499567  | 0.00000000  | 2.35558910 5 # | Au 27 |
| 5.76999134  | 0.00000000  | 2.35558910 5 # | Au 28 |
| 8.65498701  | 0.00000000  | 2.35558910 5 # | Au 29 |
| 11.53998268 | 0.00000000  | 2.35558910 5 # | Au 30 |
| 1.44249783  | 2.49847954  | 2.35558910 5 # | Au 31 |
| 4.32749350  | 2.49847954  | 2.35558910 5 # | Au 32 |
| 7.21248917  | 2.49847954  | 2.35558910 5 # | Au 33 |
| 10.09748484 | 2.49847954  | 2.35558910 5 # | Au 34 |
| 12.98248051 | 2.49847954  | 2.35558910 5 # | Au 35 |
| 2.88499566  | 4.99695908  | 2.35558910 5 # | Au 36 |
| 5.76999133  | 4.99695908  | 2.35558910 5 # | Au 37 |
| 8.65498700  | 4.99695908  | 2.35558910 5 # | Au 38 |
| 11.53998267 | 4.99695908  | 2.35558910 5 # | Au 39 |
| 14.42497834 | 4.99695908  | 2.35558910 5 # | Au 40 |
| 4.32749349  | 7.49543862  | 2.35558910 5 # | Au 41 |
| 7.21248916  | 7.49543862  | 2.35558910 5 # | Au 42 |
| 10.09748483 | 7.49543862  | 2.35558910 5 # | Au 43 |
| 12.98248050 | 7.49543862  | 2.35558910 5 # | Au 44 |
| 15.86747617 | 7.49543862  | 2.35558910 5 # | Au 45 |
| 5.76999132  | 9.99391816  | 2.35558910 5 # | Au 46 |
| 8.65498699  | 9.99391816  | 2.35558910 5 # | Au 47 |
| 11.53998266 | 9.99391816  | 2.35558910 5 # | Au 48 |
| 14.42497833 | 9.99391816  | 2.35558910 5 # | Au 49 |
| 17.30997400 | 9.99391816  | 2.35558910 5 # | Au 50 |
| 2.88499567  | 1.66565303  | 4.71117820 5 # | Au 51 |
| 5.76999134  | 1.66565303  | 4.71117820 5 # | Au 52 |
| 8.65498701  | 1.66565303  | 4.71117820 5 # | Au 53 |
| 11.53998268 | 1.66565303  | 4.71117820 5 # | Au 54 |
| 14.42497835 | 1.66565303  | 4.71117820 5 # | Au 55 |
| 4.32749350  | 4.16413257  | 4.71117820 5 # | Au 56 |
| 7.21248917  | 4.16413257  | 4.71117820 5 # | Au 57 |
| 10.09748484 | 4.16413257  | 4.71117820 5 # | Au 58 |
| 12.98248051 | 4.16413257  | 4.71117820 5 # | Au 59 |
| 15.86747618 | 4.16413257  | 4.71117820 5 # | Au 60 |

| 5.76999133  | 6.66261211  | 4.71117820 5 # | Au 61 |
|-------------|-------------|----------------|-------|
| 8.65498700  | 6.66261211  | 4.71117820 5 # | Au 62 |
| 11.53998267 | 6.66261211  | 4.71117820 5 # | Au 63 |
| 14.42497834 | 6.66261211  | 4.71117820 5 # | Au 64 |
| 17.30997401 | 6.66261211  | 4.71117820 5 # | Au 65 |
| 7.21248916  | 9.16109165  | 4.71117820 5 # | Au 66 |
| 10.09748483 | 9.16109165  | 4.71117820 5 # | Au 67 |
| 12.98248050 | 9.16109165  | 4.71117820 5 # | Au 68 |
| 15.86747617 | 9.16109165  | 4.71117820 5 # | Au 69 |
| 18.75247184 | 9.16109165  | 4.71117820 5 # | Au 70 |
| 8.65498699  | 11.65957119 | 4.71117820 5 # | Au 71 |
| 11.53998266 | 11.65957119 | 4.71117820 5 # | Au 72 |
| 14.42497833 | 11.65957119 | 4.71117820 5 # | Au 73 |
| 17.30997400 | 11.65957119 | 4.71117820 5 # | Au 74 |
| 20.19496967 | 11.65957119 | 4.71117820 5 # | Au 75 |
| 1.44249783  | 0.83282651  | 7.06676730 5 # | Au 76 |
| 4.32749350  | 0.83282651  | 7.06676730 5 # | Au 77 |
| 7.21248917  | 0.83282651  | 7.06676730 5 # | Au 78 |
| 10.09748484 | 0.83282651  | 7.06676730 5 # | Au 79 |
| 12.98248051 | 0.83282651  | 7.06676730 5 # | Au 80 |
| 2.88499566  | 3.33130605  | 7.06676730 5 # | Au 81 |
| 5.76999133  | 3.33130605  | 7.06676730 5 # | Au 82 |
| 8.65498700  | 3.33130605  | 7.06676730 5 # | Au 83 |
| 11.53998267 | 3.33130605  | 7.06676730 5 # | Au 84 |
| 14.42497834 | 3.33130605  | 7.06676730 5 # | Au 85 |
| 4.32749349  | 5.82978559  | 7.06676730 5 # | Au 86 |
| 7.21248916  | 5.82978559  | 7.06676730 5 # | Au 87 |
| 10.09748483 | 5.82978559  | 7.06676730 5 # | Au 88 |
| 12.98248050 | 5.82978559  | 7.06676730 5 # | Au 89 |
| 15.86747617 | 5.82978559  | 7.06676730 5 # | Au 90 |
| 5.76999132  | 8.32826513  | 7.06676730 5 # | Au 91 |
| 8.65498699  | 8.32826513  | 7.06676730 5 # | Au 92 |
| 11.53998266 | 8.32826513  | 7.06676730 5 # | Au 93 |
| 14.42497833 | 8.32826513  | 7.06676730 5 # | Au 94 |
| 17.30997400 | 8.32826513  | 7.06676730 5 # | Au 95 |
| 7.21248915  | 10.82674467 | 7.06676730 5 # | Au 96 |
| 10.09748482 | 10.82674467 | 7.06676730 5 # | Au 97 |

| 12.98248049 | 10.82674467 | 7.06676730 5 #  | Au 98  |
|-------------|-------------|-----------------|--------|
| 15.86747616 | 10.82674467 | 7.06676730 5 #  | Au 99  |
| 18.75247183 | 10.82674467 | 7.06676730 5 #  | Au 100 |
| 0.00000000  | 0.00000000  | 9.42235639 5 #  | Au 101 |
| 2.88499567  | 0.00000000  | 9.42235639 5 #  | Au 102 |
| 5.76999134  | 0.00000000  | 9.42235639 5 #  | Au 103 |
| 8.65498701  | 0.00000000  | 9.42235639 5 #  | Au 104 |
| 11.53998268 | 0.00000000  | 9.42235639 5 #  | Au 105 |
| 1.44249783  | 2.49847954  | 9.42235639 5 #  | Au 106 |
| 4.32749350  | 2.49847954  | 9.42235639 5 #  | Au 107 |
| 7.21248917  | 2.49847954  | 9.42235639 5 #  | Au 108 |
| 10.09748484 | 2.49847954  | 9.42235639 5 #  | Au 109 |
| 12.98248051 | 2.49847954  | 9.42235639 5 #  | Au 110 |
| 2.88499566  | 4.99695908  | 9.42235639 5 #  | Au 111 |
| 5.76999133  | 4.99695908  | 9.42235639 5 #  | Au 112 |
| 8.65498700  | 4.99695908  | 9.42235639 5 #  | Au 113 |
| 11.53998267 | 4.99695908  | 9.42235639 5 #  | Au 114 |
| 14.42497834 | 4.99695908  | 9.42235639 5 #  | Au 115 |
| 4.32749349  | 7.49543862  | 9.42235639 5 #  | Au 116 |
| 7.21248916  | 7.49543862  | 9.42235639 5 #  | Au 117 |
| 10.09748483 | 7.49543862  | 9.42235639 5 #  | Au 118 |
| 12.98248050 | 7.49543862  | 9.42235639 5 #  | Au 119 |
| 15.86747617 | 7.49543862  | 9.42235639 5 #  | Au 120 |
| 5.76999132  | 9.99391816  | 9.42235639 5 #  | Au 121 |
| 8.65498699  | 9.99391816  | 9.42235639 5 #  | Au 122 |
| 11.53998266 | 9.99391816  | 9.42235639 5 #  | Au 123 |
| 14.42497833 | 9.99391816  | 9.42235639 5 #  | Au 124 |
| 17.30997400 | 9.99391816  | 9.42235639 5 #  | Au 125 |
| 2.93221647  | 1.69652329  | 11.78248994 5 # | Au 126 |
| 11.49672213 | 1.69705280  | 11.78511097 5 # | Au 127 |
| 14.42553831 | 2.03738142  | 11.81326275 5 # | Au 128 |
| 7.21347822  | 9.14006547  | 11.80407995 5 # | Au 129 |
| 8.90856911  | 11.52125528 | 11.81853683 5 # | Au 130 |
| 19.94878592 | 11.52639788 | 11.81750636 5 # | Au 131 |
| 1.46885775  | 0.89149655  | 13.97927220 5 # | Au 132 |
| 12.96076452 | 0.89508396  | 13.98461598 5 # | Au 133 |
| 7.21418537  | 10.79580913 | 14.02856624 5 # | Au 134 |

| -0.02507590 | -0.11763859 | 15.93322599 3 # | O 135  |
|-------------|-------------|-----------------|--------|
| -0.04918644 | -0.12450299 | 17.27143147 2 # | C 136  |
| -0.03787238 | 2.05828742  | 17.44961509 1 # | Н 137  |
| -0.06327970 | -2.30469054 | 17.47175368 1 # | H 138  |
| -0.06878258 | -1.34491370 | 18.02720884 2 # | C 139  |
| -0.05502218 | 1.10594722  | 18.01585910 2 # | C 140  |
| -0.09591600 | -1.33541939 | 19.42739445 2 # | C 141  |
| -0.08231926 | 1.11262586  | 19.41478178 2 # | C 142  |
| -0.11240853 | -2.29547355 | 19.97832526 1 # | Н 143  |
| -0.08671641 | 2.07951061  | 19.95389635 1 # | H 144  |
| -0.10572389 | -0.10787150 | 20.16892037 2 # | C 145  |
| -0.14067210 | -0.10122657 | 21.60301366 2 # | C 146  |
| -0.17267877 | -0.09838185 | 22.85244525 2 # | C 147  |
| -0.13893008 | -2.79492810 | 23.223439591#   | H 148  |
| -0.22902455 | 2.60062269  | 23.227332791#   | Н 149  |
| -0.17359366 | -2.64972357 | 24.31574795 2 # | C 150  |
| -0.24046878 | 2.45358019  | 24.31981569 2 # | C 151  |
| -0.20004880 | -0.09803962 | 24.28615975 2 # | C 152  |
| -0.19780996 | -1.35587372 | 24.97312747 2 # | C 153  |
| -0.22505268 | 1.15864940  | 24.97495273 2 # | C 154  |
| -0.18190182 | -4.70441424 | 25.20402992 1 # | Н 155  |
| -0.28003163 | 4.50625168  | 25.21157150 1 # | H 156  |
| -0.19536853 | -3.60586433 | 25.31021861 2 # | C 157  |
| -0.26613512 | 3.40763470  | 25.31631506 2 # | C 158  |
| -0.21165114 | -1.52133570 | 26.35131070 4 # | N 159  |
| -0.22475259 | 1.32174670  | 26.35351098 4 # | N 160  |
| -0.22808209 | -2.89491901 | 26.57486572 2 # | C 161  |
| -0.26334283 | 2.69430404  | 26.58003788 2 # | C 162  |
| -2.95195032 | -0.10653860 | 27.82391842 7 # | I 163  |
| -0.27513579 | -4.62637172 | 27.83401651 1 # | H 164  |
| -0.25840357 | -3.51931630 | 27.83442228 2 # | C 165  |
| -0.32130234 | -0.10172469 | 27.83503929 6 # | Rh 166 |
| -0.27682668 | 3.31601501  | 27.84144245 2 # | C 167  |
| -0.30336507 | 4.42293972  | 27.84366764 1 # | H 168  |
| -0.25917831 | -2.89451605 | 29.09551856 2 # | C 169  |
| -0.25153154 | 2.68849654  | 29.10107607 2 # | C 170  |
| -0.22896915 | -1.52439091 | 29.31657780 4 # | N 171  |

| -0.22366086 | 1.31777027  | 29.31909521 4 # | N 172 |
|-------------|-------------|-----------------|-------|
| -0.26490659 | -3.60518316 | 30.36251074 2 # | C 173 |
| -0.23649883 | 3.39602384  | 30.36985727 2 # | C 174 |
| -0.27209729 | -4.70363077 | 30.47039215 1 # | Н 175 |
| -0.23471275 | 4.49407274  | 30.480733591#   | H 176 |
| -0.23721381 | -1.35604073 | 30.69864692 2 # | C 177 |
| -0.22096397 | 1.14603428  | 30.70100345 2 # | C 178 |
| -0.22298748 | -0.10580849 | 31.36071399 2 # | C 179 |
| -0.24903100 | -2.65097521 | 31.35763933 2 # | C 180 |
| -0.21379914 | 2.43945817  | 31.36258729 2 # | C 181 |
| -0.24295997 | -2.81138684 | 32.44816432 1 # | H 182 |
| -0.19141290 | 2.59747724  | 32.45321412 1 # | H 183 |
| 2.11583067  | -0.12161451 | 32.79126631 3 # | O 184 |
| -0.20271134 | -0.10832980 | 32.81902376 4 # | N 185 |
| -2.52072899 | -0.08726955 | 32.87229422 3 # | O 186 |
| 1.07499345  | -0.11764913 | 33.45704326 2 # | C 187 |
| -1.45903094 | -0.09801514 | 33.50106363 2 # | C 188 |
| 1.07544261  | -0.12141397 | 34.96235845 2 # | C 189 |
| -1.40711577 | -0.10063455 | 35.00570817 2 # | C 190 |
| 3.23417661  | -0.13836781 | 35.07325265 1 # | H 191 |
| -3.56063472 | -0.08032589 | 35.18987961 1 # | H 192 |
| 2.29514637  | -0.13192466 | 35.66078772 2 # | C 193 |
| -0.15371203 | -0.11241651 | 35.69039458 2 # | C 194 |
| -2.60239616 | -0.09036614 | 35.74537742 2 # | C 195 |
| 2.31846680  | -0.13386530 | 37.08148958 2 # | C 196 |
| -0.12914333 | -0.11486102 | 37.13123713 2 # | C 197 |
| -2.57734032 | -0.09290462 | 37.16593914 2 # | C 198 |
| 3.27564952  | -0.14100195 | 37.639227181#   | H 199 |
| -3.51504996 | -0.08464916 | 37.75598311 1 # | H 200 |
| 1.12230906  | -0.12529620 | 37.81899228 2 # | C 201 |
| -1.35628830 | -0.10527790 | 37.86141664 2 # | C 202 |
| 1.17089752  | -0.12266495 | 39.32672595 2 # | C 203 |
| -1.35264913 | -0.10458125 | 39.36958975 2 # | C 204 |
| 2.23978497  | -0.12847791 | 39.94716422 3 # | O 205 |
| -0.07946178 | -0.11256327 | 40.01116109 4 # | N 206 |
| -2.39958512 | -0.09680562 | 40.02624773 3 # | O 207 |
| -0.05695958 | -0.09208073 | 41.47167182 2 # | C 208 |

| -0.04063581 | 2.08752168  | 41.60234803 1 # | H 209  |
|-------------|-------------|-----------------|--------|
| -0.06815480 | -2.26736049 | 41.67461341 1 # | H 210  |
| -0.04131049 | 1.13685538  | 42.17039096 2 # | C 211  |
| -0.05679740 | -1.29785084 | 42.21061574 2 # | C 212  |
| -0.02822381 | 1.16277782  | 43.57807368 2 # | C 213  |
| -0.04381012 | -1.27641642 | 43.61790984 2 # | C 214  |
| -0.01620861 | 2.13110874  | 44.11703391 1 # | H 215  |
| -0.04409780 | -2.22716018 | 44.18730333 1 # | H 216  |
| -0.03138365 | -0.04406353 | 44.34124035 2 # | C 217  |
| -0.02107128 | -0.02329816 | 45.70277841 3 # | O 218  |
| 14.42682790 | 1.68681409  | 47.56586444 5 # | Au 219 |
| 8.70076526  | 11.61272683 | 47.58407929 5 # | Au 220 |
| 20.14966743 | 11.60843876 | 47.57983078 5 # | Au 221 |
| 1.68896600  | 0.96381117  | 49.77591271 5 # | Au 222 |
| 12.74204225 | 0.95951264  | 49.77636373 5 # | Au 223 |
| 14.42547056 | 3.35116208  | 49.79093885 5 # | Au 224 |
| 7.21244729  | 10.53751623 | 49.78442844 5 # | Au 225 |
| 10.14208804 | 10.80070641 | 49.80254040 5 # | Au 226 |
| 18.70951844 | 10.80034766 | 49.80058023 5 # | Au 227 |
| 0.00000000  | 0.00000000  | 52.17469681 5 # | Au 228 |
| 2.88499572  | 0.00000000  | 52.17469681 5 # | Au 229 |
| 5.76999145  | 0.00000000  | 52.17469681 5 # | Au 230 |
| 8.65498717  | 0.00000000  | 52.17469681 5 # | Au 231 |
| 11.53998290 | 0.00000000  | 52.17469681 5 # | Au 232 |
| 1.44249786  | 2.49847959  | 52.17469681 5 # | Au 233 |
| 4.32749358  | 2.49847959  | 52.17469681 5 # | Au 234 |
| 7.21248931  | 2.49847959  | 52.17469681 5 # | Au 235 |
| 10.09748503 | 2.49847959  | 52.17469681 5 # | Au 236 |
| 12.98248076 | 2.49847959  | 52.17469681 5 # | Au 237 |
| 2.88499571  | 4.99695918  | 52.17469681 5 # | Au 238 |
| 5.76999144  | 4.99695918  | 52.17469681 5 # | Au 239 |
| 8.65498716  | 4.99695918  | 52.17469681 5 # | Au 240 |
| 11.53998289 | 4.99695918  | 52.17469681 5 # | Au 241 |
| 14.42497861 | 4.99695918  | 52.17469681 5 # | Au 242 |
| 4.32749357  | 7.49543876  | 52.17469681 5 # | Au 243 |
| 7.21248930  | 7.49543876  | 52.17469681 5 # | Au 244 |
| 10.09748502 | 7.49543876  | 52.17469681 5 # | Au 245 |

| 12.98248075 | 7.49543876  | 52.17469681 5 # | Au 246 |
|-------------|-------------|-----------------|--------|
| 15.86747647 | 7.49543876  | 52.17469681 5 # | Au 247 |
| 5.76999143  | 9.99391835  | 52.17469681 5 # | Au 248 |
| 8.65498715  | 9.99391835  | 52.17469681 5 # | Au 249 |
| 11.53998288 | 9.99391835  | 52.17469681 5 # | Au 250 |
| 14.42497860 | 9.99391835  | 52.17469681 5 # | Au 251 |
| 17.30997433 | 9.99391835  | 52.17469681 5 # | Au 252 |
| 2.88499572  | 1.66565306  | 54.53028596 5 # | Au 253 |
| 5.76999145  | 1.66565306  | 54.53028596 5 # | Au 254 |
| 8.65498717  | 1.66565306  | 54.53028596 5 # | Au 255 |
| 11.53998290 | 1.66565306  | 54.53028596 5 # | Au 256 |
| 14.42497862 | 1.66565306  | 54.53028596 5 # | Au 257 |
| 4.32749358  | 4.16413265  | 54.53028596 5 # | Au 258 |
| 7.21248931  | 4.16413265  | 54.53028596 5 # | Au 259 |
| 10.09748503 | 4.16413265  | 54.53028596 5 # | Au 260 |
| 12.98248076 | 4.16413265  | 54.53028596 5 # | Au 261 |
| 15.86747648 | 4.16413265  | 54.53028596 5 # | Au 262 |
| 5.76999144  | 6.66261224  | 54.53028596 5 # | Au 263 |
| 8.65498716  | 6.66261224  | 54.53028596 5 # | Au 264 |
| 11.53998289 | 6.66261224  | 54.53028596 5 # | Au 265 |
| 14.42497861 | 6.66261224  | 54.53028596 5 # | Au 266 |
| 17.30997434 | 6.66261224  | 54.53028596 5 # | Au 267 |
| 7.21248930  | 9.16109182  | 54.53028596 5 # | Au 268 |
| 10.09748502 | 9.16109182  | 54.53028596 5 # | Au 269 |
| 12.98248075 | 9.16109182  | 54.53028596 5 # | Au 270 |
| 15.86747647 | 9.16109182  | 54.53028596 5 # | Au 271 |
| 18.75247220 | 9.16109182  | 54.53028596 5 # | Au 272 |
| 8.65498715  | 11.65957141 | 54.53028596 5 # | Au 273 |
| 11.53998288 | 11.65957141 | 54.53028596 5 # | Au 274 |
| 14.42497860 | 11.65957141 | 54.53028596 5 # | Au 275 |
| 17.30997433 | 11.65957141 | 54.53028596 5 # | Au 276 |
| 20.19497005 | 11.65957141 | 54.53028596 5 # | Au 277 |
| 1.44249783  | 0.83282651  | 56.88587501 5 # | Au 278 |
| 4.32749350  | 0.83282651  | 56.88587501 5 # | Au 279 |
| 7.21248917  | 0.83282651  | 56.88587501 5 # | Au 280 |
| 10.09748484 | 0.83282651  | 56.88587501 5 # | Au 281 |
| 12.98248051 | 0.83282651  | 56.88587501 5 # | Au 282 |

| 2.88499566  | 3.33130605  | 56.88587501 5 # | Au 283 |
|-------------|-------------|-----------------|--------|
| 5.76999133  | 3.33130605  | 56.88587501 5 # | Au 284 |
| 8.65498700  | 3.33130605  | 56.88587501 5 # | Au 285 |
| 11.53998267 | 3.33130605  | 56.88587501 5 # | Au 286 |
| 14.42497834 | 3.33130605  | 56.88587501 5 # | Au 287 |
| 4.32749349  | 5.82978559  | 56.88587501 5 # | Au 288 |
| 7.21248916  | 5.82978559  | 56.88587501 5 # | Au 289 |
| 10.09748483 | 5.82978559  | 56.88587501 5 # | Au 290 |
| 12.98248050 | 5.82978559  | 56.88587501 5 # | Au 291 |
| 15.86747617 | 5.82978559  | 56.88587501 5 # | Au 292 |
| 5.76999132  | 8.32826513  | 56.88587501 5 # | Au 293 |
| 8.65498699  | 8.32826513  | 56.88587501 5 # | Au 294 |
| 11.53998266 | 8.32826513  | 56.88587501 5 # | Au 295 |
| 14.42497833 | 8.32826513  | 56.88587501 5 # | Au 296 |
| 17.30997400 | 8.32826513  | 56.88587501 5 # | Au 297 |
| 7.21248915  | 10.82674467 | 56.88587501 5 # | Au 298 |
| 10.09748482 | 10.82674467 | 56.88587501 5 # | Au 299 |
| 12.98248049 | 10.82674467 | 56.88587501 5 # | Au 300 |
| 15.86747616 | 10.82674467 | 56.88587501 5 # | Au 301 |
| 18.75247183 | 10.82674467 | 56.88587501 5 # | Au 302 |
| 0.00000000  | 0.00000000  | 59.24146410 5 # | Au 303 |
| 2.88499567  | 0.00000000  | 59.24146410 5 # | Au 304 |
| 5.76999134  | 0.00000000  | 59.24146410 5 # | Au 305 |
| 8.65498701  | 0.00000000  | 59.24146410 5 # | Au 306 |
| 11.53998268 | 0.00000000  | 59.24146410 5 # | Au 307 |
| 1.44249783  | 2.49847954  | 59.24146410 5 # | Au 308 |
| 4.32749350  | 2.49847954  | 59.24146410 5 # | Au 309 |
| 7.21248917  | 2.49847954  | 59.24146410 5 # | Au 310 |
| 10.09748484 | 2.49847954  | 59.24146410 5 # | Au 311 |
| 12.98248051 | 2.49847954  | 59.24146410 5 # | Au 312 |
| 2.88499566  | 4.99695908  | 59.24146410 5 # | Au 313 |
| 5.76999133  | 4.99695908  | 59.24146410 5 # | Au 314 |
| 8.65498700  | 4.99695908  | 59.24146410 5 # | Au 315 |
| 11.53998267 | 4.99695908  | 59.24146410 5 # | Au 316 |
| 14.42497834 | 4.99695908  | 59.24146410 5 # | Au 317 |
| 4.32749349  | 7.49543862  | 59.24146410 5 # | Au 318 |
| 7.21248916  | 7.49543862  | 59.24146410 5 # | Au 319 |

| 10.09748483  | 7.49543862  | 59.24146410 5 # | Au 320 |
|--------------|-------------|-----------------|--------|
| 12.98248050  | 7.49543862  | 59.24146410 5 # | Au 321 |
| 15.86747617  | 7.49543862  | 59.24146410 5 # | Au 322 |
| 5.76999132   | 9.99391816  | 59.24146410 5 # | Au 323 |
| 8.65498699   | 9.99391816  | 59.24146410 5 # | Au 324 |
| 11.53998266  | 9.99391816  | 59.24146410 5 # | Au 325 |
| 14.42497833  | 9.99391816  | 59.24146410 5 # | Au 326 |
| 17.30997400  | 9.99391816  | 59.24146410 5 # | Au 327 |
| 2.88499567   | 1.66565303  | 61.59705320 5 # | Au 328 |
| 5.76999134   | 1.66565303  | 61.59705320 5 # | Au 329 |
| 8.65498701   | 1.66565303  | 61.59705320 5 # | Au 330 |
| 11.53998268  | 1.66565303  | 61.59705320 5 # | Au 331 |
| 14.42497835  | 1.66565303  | 61.59705320 5 # | Au 332 |
| 4.32749350   | 4.16413257  | 61.59705320 5 # | Au 333 |
| 7.21248917   | 4.16413257  | 61.59705320 5 # | Au 334 |
| 10.09748484  | 4.16413257  | 61.59705320 5 # | Au 335 |
| 12.98248051  | 4.16413257  | 61.59705320 5 # | Au 336 |
| 15.86747618  | 4.16413257  | 61.59705320 5 # | Au 337 |
| 5.76999133   | 6.66261211  | 61.59705320 5 # | Au 338 |
| 8.65498700   | 6.66261211  | 61.59705320 5 # | Au 339 |
| 11.53998267  | 6.66261211  | 61.59705320 5 # | Au 340 |
| 14.42497834  | 6.66261211  | 61.59705320 5 # | Au 341 |
| 17.30997401  | 6.66261211  | 61.59705320 5 # | Au 342 |
| 7.21248916   | 9.16109165  | 61.59705320 5 # | Au 343 |
| 10.09748483  | 9.16109165  | 61.59705320 5 # | Au 344 |
| 12.98248050  | 9.16109165  | 61.59705320 5 # | Au 345 |
| 15.86747617  | 9.16109165  | 61.59705320 5 # | Au 346 |
| 18.75247184  | 9.16109165  | 61.59705320 5 # | Au 347 |
| 8.65498699   | 11.65957119 | 61.59705320 5 # | Au 348 |
| 11.53998266  | 11.65957119 | 61.59705320 5 # | Au 349 |
| 14.42497833  | 11.65957119 | 61.59705320 5 # | Au 350 |
| 17.30997400  | 11.65957119 | 61.59705320 5 # | Au 351 |
| 20.19496967  | 11.65957119 | 61.59705320 5 # | Au 352 |
| / 11 1 1 4 / | · O 1.      | A 1A4 ' C '     |        |

 $\label{eq:condition} \ensuremath{\text{\sc block}}\xspace{\sc block} AtomicCoordinatesAndAtomicSpecies$