Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019

Supporting Information

The Role of Gold Oxidation State in the Synthesis of Au-CsPbX₃ Heterostructure or Lead-free Cs₂Au^IAu^{III}X₆ Perovskite Nanoparticles

Freddy A. Rodríguez Ortiz,^a Benjamin J. Roman,^a Je-Ruei Wen,^a Noel Mireles Villegas,^a David F. Dacres,^b Matthew T. Sheldon*^a

 ^a Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
^b Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
E-mail: sheldonm@tamu.edu

Figure S1. Photograph of suspension $CsPbCl_3$ nanocrystals after gold deposition or cation exchange reactions. $CsPbCl_3$ (left), Au-CsPbCl_3 (middle), and $Cs_2Au_2Cl_6$ (right). The photogrpahs were taken after 1 minutes of reaction.

Figure S2. Photograph of suspension of CsPbBr₃ nanocrystals after gold deposition or cation exchange reactions. CsPbBr₃ (left), Au-CsPbBr₃ (middle), and Cs₂Au₂Br₆ (right), . The photogrpahs were taken after 5 minutes of reaction.

Figure S3. Absorbance of $CsPbCl_3$ nanocrystals before and after Au metal deposition compared to the cation exchange product, $Cs_2Au_2Cl_6$.

Figure S4. Absorbance of CsPbBr₃ nanocrystals before and after Au metal deposition compared to the cation exchange product, Cs₂Au₂B

Figure S5. Absorbance of CsPbI₃ nanocrystals before and after Au metal deposition.

Figure S6. TEM image of CsPbCl₃. Average particle edge length is 8.3 ± 1.3 nm

Figure S7. TEM image of CsPbBr₃. Average particle edge length is 8.2 ± 1.1 nm

Figure 8. TEM image of CsPbI₃. Average particle edge length is 9.6 ± 1.6 nm

Figure S9. Left) HRTEM image of an Au-CsPbCl₃ NCs showing the fringes of the Au nanoparticles (yellow square). (Right) Fast Fourier transform revealing the lattice spacing between (111) planes of cubic gold.

Figure S10. Left) HRTEM image of an Au-CsPbBr₃ NCs showing the fringes of the Au nanoparticles (yellow square). (Right) Fast Fourier transform revealing the lattice spacing between (111) planes of cubic gold.

Figure S11. Left) HRTEM image of an Au-CsPbl₃ NCs showing the fringes of the Au nanoparticles (yellow square). (Right) Fast Fourier transform revealing the lattice spacing between (111) planes of cubic gold.

Sample	Fluorescence Quantum Yield (FQY)
CsPbBr₃	63.28 %
Au-CsPbBr ₃	52.07 %
CsPbCl ₃	6.27 %
Au-CsPbCl ₃	2.97 %
CsPbl ₃	35.62 %
Au-CsPbl ₃	23.05 %

Table S1. PLQY of CsPbX₃ perovskite nanocrystal before and after Au deposition.

Figure S12. Normalized XRD diffractograms showing the presence and absence of CsPbBr₃ and Cs₂Au₂Br₆ peaks as 300 μ L of 1.58 mM AuBr₃ or AuBr are added to identical amounts of CsPbBr₃. The peak located at a 2 θ value of 32.56 degrees (yellow trace) correspond to the (220) reflection of tetragonal phase Cs₂Au₂Br₆. The black ticks on the bottom horizontal axis denote reflections of tetragonal Cs₂Au₂Br₆.

Figure S13. Normalized XRD diffractograms showing the presence and absence of CsPbBr₃ and Cs₂Au₂Br₆ peaks as 300 μL of 6.28 mM AuBr₃ or AuBr are added to identical amounts of CsPbBr₃. The black ticks on the bottom horizontal axis denote reflections of tetragonal Cs₂Au₂Br₆.

Figure S14. Normalized XRD diffractograms showing the presence and absence of CsPbBCl₃ and Cs₂Au₂Cl₆ peaks as 300 μ L of 1.58 mM AuCl₃ or AuCl are added to identical amounts of CsPbCl₃. Shoulder peaks at a 2 θ values of 16.73 and 32.93 degrees (yellow trace) can be attributed to the (110) and (004) reflections of tetragonal phase Cs₂Au₂Cl₆. The black ticks on the bottom horizontal axis denote reflections of tetragonal Cs₂Au₂Cl₆.

Figure S15. Normalized XRD diffractograms showing the presence and absence of CsPbCl₃ and Cs₂Au₂Cl₆ peaks as 300 μ L of 6.28 mM AuCl₃ or 6.28 mM AuCl are added to dentical amounts of CsPbCl₃. The black ticks on the bottom horizontal axis denote reflections of tetragonal Cs₂Au₂Cl₆.

Figure S16. TEM images of Au-CsPbBr $_3$ after Au deposition with 0.3 mL of a 6.28 mM AuBr solution.

Figure S17. TEM images of Au-CsPbCl $_3$ after Au deposition with 0.3 mL of a 6.28 mM AuCl solution.