## **Supporting Information**

## Synthesis of Octahedral Pt-Ni-Ir Yolk-Shell Nanoparticles and their Catalysis for Oxygen Reduction and Methanol Oxidization in both Acidic and Alkaline Conditions

Tao Yang,<sup>a,\*</sup> Yihui Wang,<sup>a</sup> Wenxian Wei,<sup>b</sup> Xinran Ding,<sup>a</sup> Maoshuai He,<sup>c,d</sup> Tingting Yu,<sup>a</sup> Hong Zhao,<sup>a</sup> Dongen Zhang<sup>a</sup>

<sup>a</sup>School of Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China

<sup>b</sup>Testing Center, Yangzhou University, Yangzhou 225009, China

<sup>c</sup>State Key Laboratory of Eco-Chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engi-neering, Qingdao University of Science and Technology, Qingdao 266042, China

<sup>d</sup>School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Correspondence and requests for materials should be addressed to Tao Yang (yangtao\_hit@163.com)



**Fig. S1** (A) TEM image of the Pt-Ni-Ir core-shell nanoparticles obtained by reducing  $Pt(acac)_2$ ,  $Ni(acac)_2$  and  $Ir(acac)_3$  with carbon monoxide in oleylamine (OAm) and oleic acid (OA) at 230 °C for 60 min, and (B) the corresponding TEM-EDS spectra. Nearly all the products are core-shell nanoparticles (~25 nm in edge length) with a dark core and an octahedral shell. The chemical composition calculated from TEM-EDS spectra was also shown.



**Fig. S2** (A) TEM image of the Pt coved nanoparticles by controllably depositing Pt on Pt-Ni-Ir coreshell, and (B) the corresponding TEM-EDS spectra. The products are still core-shell nanoparticles with similar size. The chemical composition obtained from TEM-EDS spectra shows the increment of Pt content compared with the Pt-Ni-Ir core-shell. There are no isolated Pt nanoparticles. These results suggest that Pt exclusively deposited on the Pt-Ni-Ir core-shell nanoparticles in the second process.



**Fig. S3** (A) TEM image of the products obtained by Ni-coordinating etching the Pt covered Pt-Ni-Ir core-shell nanoparticles, and (B) the corresponding TEM-EDS spectra. The Ni-rich phase was removed and yolk-shell structure formed.



**Fig. S4** (A) HRTEM image of an individual Pt-Ni-Ir core-shell octahedron, and (B-D) three enlarged region circled by red rectangles. The distinct lattice fringes with a *d*-spacing of 2.04 Å coherently extended over the whole crystal, suggesting that the nanoparticle was enclosed by Ni-rich nanocrystal with high crystallinity.



**Fig. S5** (A) HRTEM image of an individual Pt covered Pt-Ni-Ir core-shell octahedron, and (B-D) three enlarged region circled by red rectangles. The distinct lattice fringes with a *d*-spacing of 2.28 Å coherently extended over the whole crystal, suggesting that the nanoparticle was enclosed by Pt-rich skin with high crystallinity. The scale bar in A is 5 nm, in B, C and D is 1 nm, respectively.



**Fig. S6** (A) HRTEM image of Pt-Ni-Ir yolk-shell particles, and (B-D) three enlarged region circled by red rectangles. The distinct lattice fringes with a *d*-spacing of 2.28 Å coherently extended over the whole shell. Cavity and lattice defect were observed on the shell. The bended edges were also observed.



**Fig. S7** XRD patterns of Pt-Ni-Ir core-shell and yolk-shell particles. The standard Pt, Ni and Ir peaks are marked as cyan, red and green lines perpendicular to the x-axis.

| Table S1 XRD | peaks analysis | of Pt-Ni-Ir c | core-shell and | yolk-shell | nanostructures. |
|--------------|----------------|---------------|----------------|------------|-----------------|
|--------------|----------------|---------------|----------------|------------|-----------------|

|                        | (111)  | (200)  | (220)  | (311)  | (222)  | (400)   | (331)   | (420)   | (422)   |
|------------------------|--------|--------|--------|--------|--------|---------|---------|---------|---------|
| Pt-Ni-Ir               | 40.223 | 46.762 | 68.348 | 82.425 | 86.546 | 104.94  | 119.58  | 124.84  |         |
| core-shell             | 44.267 | 51.541 | 76.042 | 91.94  | 96.98  |         |         |         |         |
| Pt-Ni-Ir<br>yolk-shell | 40.144 | 46.683 | 68.190 | 82.113 | 86.441 | 104.66  | 119.16  | 124.30  |         |
| Pt (#65-               | 30 754 | 16 223 | 67 152 | 81 242 | 85 688 | 103 478 | 117 663 | 122 775 | 148 160 |
| 2858)                  | 39.734 | 40.235 | 07.452 | 01.242 | 85.088 | 105.478 | 117.005 | 122.775 | 140.109 |
| Ni (#04-               | 44 507 | 51 846 | 76 370 | 02 011 | 08 116 | 121 030 | 111 660 | 155 653 |         |
| 0850)                  | 44.307 | 51.840 | /0.3/0 | 92.944 | 90.440 | 121.930 | 144.009 | 155.055 |         |
| Ir (#46-1044)          | 40.660 | 47.303 | 69.134 | 83.412 | 88.035 | 106.714 | 121.942 | 127.556 |         |



**Fig. S8** Pt-Ni core-shell and yolk-shell nanostructures. TEM image of Pt-Ni (A) core-shell and (B) yolk-shell nanoparticles, (C) HRTEM image of Pt-Ni yolk-shell nanoparticle. TEM-EDS spectra and chemical composition of (D) core-shell and (E) yolk-shell nanostructures. (F) XRD pattern of Pt-Ni core-shell and yolk-shell nanoparticles. The Pt-Ni core-shell and yolk-shell were prepared through the same method of Pt-Ni-Ir core-shell and yolk-shell in absence of Ir(acac)<sub>3</sub>.



**Fig. S9** Pt-Ni-Ir nanoparticles. (A) TEM image and (B) HRTEM image of the ternary alloy particles. (C) EDS spectra and chemical composition, (D) XRD of the ternary particles. Pt-Ni-Ir nanoparticles were prepared by reducing Pt(acac)<sub>2</sub> (20 mg, 0.051 mmol), Ni(acac)<sub>2</sub> (5 mg, 0.019mmol) and Ir(acac)<sub>3</sub> (10 mg, 0.02 mmol) in oleylamine (9.0 mL) and oleic acid (1.0 mL) with carbon monoxide at 230 °C for 60 min.



**Fig. S10** Overview XPS spectra of Pt-Ni-Ir core-shell and yolk-shell nanoparticles, and the corresponding chemical compositions.



**Fig. S11 H**igh solution XPS spectra of (A) Pt and (B) Ni for Pt-Ni-Ir core-shell and yolk-shell particles. The Pt binding energy showed positive shift for Pt-Ni-Ir yolk-shell, suggesting a modification of electronic structure and binding properties.



**Fig. S12** TEM images of products obtained from first step of stepwise co-deposition process and the corresponding EDS spectra at different reaction time. (A) 3 min, (B) 8 min, (C) 15 min, (D) 25 min. The chemical compositions calculated from EDS spectra were also shown. The results show that cubic Pt-rich nanocrystals firstly formed at the initial stage, Ni-rich shell then deposited onto the nanocubes exclusively.



Fig. S13 EDS spectra from different location of the Pt-Ni-Ir core-shell nanoparticle.



**Fig. S14** (A) TEM image, (B) HRTEM image, (C) TEM-EDS, (D) STEM image, (E) Cross-sectional compositional line profile, elemental mapping for (G) Pt, (H) Ni and (Ir) on the Pt-Ni-Ir core-shell nanoparticle of (E). The product was obtained at 30 min in stepwise co-deposition process.



Fig. S15 Product without (A) Ir(acac)<sub>3</sub> or (B) Pt(acac)<sub>2</sub> in the stepwise co-deposition process.



**Fig. S16** TEM image of the product in the second step of controllable Pt deposition without using TOP. Cubic Pt nanocrystals also formed.



Fig. S17 The Influence of TOP on Pt deposition. A solution of oleylamine with Pt(acac)<sub>2</sub> and TOP remained colorless and transparent in 35 min at 180 °C, suggesting that Pt has not been reduced.
While a solution of oleylamine with only Pt(acac)<sub>2</sub> became more and more black, suggesting the Pt deposition.



**Fig. S18** Chemical composition evolution in the products at different reaction time. A is Pt covered Pt-Ni-Ir core-shell, B is Pt-Ni-Ir yolk-shell.



**Fig. S19** CV profiles of commercial Pt/C before and after durability test for ORR in  $HClO_4$  solution. The durability tests were performed by 10000 CV cycles in oxygen saturated  $HClO_4$  solution in the potential range of 0.6-1.0 V.



**Fig. S20** ORR performance of Pt-Ni yolk-shell catalyst in  $HClO_4$  before and after ADT test. (A) CV curves, (B) ORR polarization curves, (C) specific activities toward ORR ( $j_k$ ) that are presented as kinetic current normalized to the EASA. (D) mass activities toward ORR based on Pt loading amount.



Fig. S21 ORR performance of Pt-Ni-Ir nanoparticle catalyst in  $HClO_4$  before and after ADT test. (A) CV curves, (B) ORR polarization curves, (C) specific activities toward ORR ( $j_k$ ) that are presented as kinetic current normalized to the EASA. (D) mass activities toward ORR based on Pt loading amount.



**Fig. S22** CV profiles of commercial Pt/C before and after durability test for ORR in KOH solution. The durability tests were performed by 10000 CV cycles in oxygen saturated KOH solution in the potential range of 0.6-1.0 V.



**Fig. S23** ORR performance of Pt-Ni yolk-shell catalyst in KOH before and after ADT test. (A) CV curves, (B) ORR polarization curves, (C) specific activities toward ORR ( $j_k$ ) that are presented as kinetic current normalized to the EASA. (D) mass activities toward ORR based on Pt loading amount.



Fig. S24 ORR performance of Pt-Ni-Ir nanoparticle catalyst in KOH before and after ADT test. (A) CV curves, (B) ORR polarization curves, (C) specific activities toward ORR ( $j_k$ ) that are presented as kinetic current normalized to the EASA. (D) mass activities toward ORR based on Pt loading amount.



**Fig. S25** Comparison of MOR electrocatalytic properties between Pt-Ni-Ir Yolk-shell and the commercial Pt/C catalysts. CV profiles in Ar-saturated (A) 0.1 M  $HClO_4 + 1$  M  $CH_3OH$  and (B) 1.0 M KOH +1 M  $CH_3OH$  solution, respectively. The current was normalized to ECSA of the catalysts. The durability tests were performed by 4000 MOR CV cycles in the solution of 0.1 M  $HClO_4 + 1$  M  $CH_3OH$  and 1.0 M KOH +1 M  $CH_3OH$  solution, respectively.



**Fig. S26** MOR CV profiles of Pt-Ni yolk-shell catalyst before and after ADT test in  $0.1 \text{ M HClO}_4 + 1 \text{ M CH}_3\text{OH}$ . (A) Mass activities, the current was normalized to Pt loading amount, (B) specific activity, the current was normalized to ECSAs.



**Fig. S27** MOR CV profiles of Pt-Ni-Ir nanoparticle catalyst before and after ADT test in 0.1 M  $HClO_4 + 1$  M  $CH_3OH$ . (A) Mass activities, the current was normalized to Pt loading amount, (B) specific activity, the current was normalized to ECSAs.



**Fig. S28** MOR CV profiles of Pt-Ni yolk-shell catalyst before and after ADT test in 1.0 M KOH + 1.0 M CH<sub>3</sub>OH. (A) Mass activities, the current was normalized to Pt loading amount, (B) specific activity, the current was normalized to ECSAs.



**Fig. S29** MOR CV profiles of Pt-Ni-Ir nanoparticle catalyst before and after ADT test in 1.0 M KOH + 1.0 M CH<sub>3</sub>OH. (A) Mass activities, the current was normalized to Pt loading amount, (B) specific activity, the current was normalized to ECSAs.



Fig. S30 (A) TEM image of the yolk-shell Pt-Ni-Ir catalyst after ORR durability test in  $HClO_4$  solution, and (B) the corresponding EDS spectra. The chemical composition calculated from EDS spectra was shown. Compared with the initial yolk-shell catalyst, the Ni content decreased from 18.4 % to 14.3 %.



Fig. S31 (A) TEM image of the yolk-shell Pt-Ni-Ir catalyst after MOR durability test in  $HClO_4$  +CH<sub>3</sub>OH solution, and (B) the corresponding EDS spectra. The chemical composition calculated from EDS spectra was shown. Compared with the initial yolk-shell catalyst, the Ni content decreased from 18.4 % to 16.1 %.

|                       | EASA m <sup>2</sup> g <sup>-1</sup> |       | Degraded %  | $J_{\rm k}$ @ 0.9 V mA cm <sup>-2</sup> |       | Degraded 0/ |  |
|-----------------------|-------------------------------------|-------|-------------|-----------------------------------------|-------|-------------|--|
| Samples               | Initial                             | Final | Degraded 70 | Initial                                 | Final | Degraded 70 |  |
| Commercial Pt/C       | 64.3                                | 48.1  | 25.2        | 0.22                                    | 0.106 | 51.8        |  |
| Pt-Ni yolk-shell      | 48.3                                | 35.6  | 26.2        | 0.72                                    | 0.45  | 53.6        |  |
| Pt-Ni-Ir nanoparticle | 38.7                                | 30.0  | 22.6        | 1.28                                    | 1.12  | 31.9        |  |
| Pt-Ni-Ir Yolk-shell   | 42.1                                | 33.3  | 21          | 1.58                                    | 1.54  | 2.5         |  |

**Table S2** The ECSA and specific activities variation through the ORR durability test in  $HClO_4$  solution.

**Table S3** The ECSA and specific activities variation through the ORR durability test in KOH solution.

|                       | EASA m <sup>2</sup> g <sup>-1</sup> |       | Degraded %  | $J_{\rm k}$ @ 0.9 V | Degraded % |             |
|-----------------------|-------------------------------------|-------|-------------|---------------------|------------|-------------|
| Samples               | Initial                             | Final | Degraded 70 | Initial             | Final      | Degraded 70 |
| Commercial Pt/C       | 66.1                                | 59.9  | 9.4         | 0.205               | 0.137      | 33.2        |
| Pt-Ni yolk-shell      | 45.7                                | 39.8  | 13          | 0.84                | 0.59       | 31          |
| Pt-Ni-Ir nanoparticle | 42.8                                | 39.0  | 8.9         | 0.86                | 0.70       | 26.2        |
| Pt-Ni-Ir Yolk-shell   | 40.7                                | 43.4  | -6.6        | 0.961               | 0.707      | 26.4        |

**Table S4** The MOR peak mass activities through the durability test.

|                     | HClO <sub>4</sub> mA mg <sub>Pt</sub> <sup>-1</sup> |       | Degraded %    | KOH mA mg <sub>Pt</sub> <sup>-1</sup> |       | Degraded %    |
|---------------------|-----------------------------------------------------|-------|---------------|---------------------------------------|-------|---------------|
| Samples             | Initial                                             | Final | Degraded 70 = | Initial                               | Final | - Degraded 70 |
| Commercial Pt/C     | 216                                                 | 149   | 31            | 319                                   | 236   | 26            |
| Pt-Ni yolk-shell    | 618                                                 | 536   | 13.3          | 1203                                  | 1019  | 15.3          |
| Pt-Ni-Ir            |                                                     |       | 2.7           |                                       |       | 5             |
| nanoparticle        | 628                                                 | 611   |               | 1124                                  | 1068  |               |
| Pt-Ni-Ir Yolk-shell | 782                                                 | 760   | 2.7           | 1165                                  | 1123  | 3.6           |