Supplementary Information for

Ambient Oxidation of Ti₃C₂ MXene Initialized by Atomic Defects

Fanjie Xia^a, Junchao Lao^b, Ruohan Yu^a, Xiahan Sang^a, Jiayan Luo^b, Yu Lia and Jinsong Wu^{*a}

^aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and Nanostructure Research Centre, Wuhan University of Technology, Wuhan, Hubei 430070, China. wujs@whut.edu.cn

^bKey Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

KEYWORDS: MXene, atomic defects, mechanism of oxidation, oxide nucleation and growth, materials stability,

aberration corrected scanning transmission electron microscopy

Content: Supplementary Figures S1 to S8 and Tables S1-S3.

Figure S1. Schematic diagram of MXenes synthesis. (a) The layered-structured MAX phases (Ti_3AIC_2) and (b) the MXene $(Ti_3C_2T_2)$ obtained by selective etching AI atoms in the MAX phases with HF.

Figure S2. (a) The fresh $Ti_3C_2T_z$ colloidal solution wrapped with tin foil and (b) the aged solution for 20 days at room temperature. (c) Corresponding HAADF-STEM image from (b).

Figure S3. (a) HAADF-STEM image at low magnification, (b-d) Corresponding EDS elemental maps of the whole area in (c), C shown in red, O in green and Ti in blue.

Figure S4. Phase identification of anatase TiO₂: (a-b) HAADF STEM images showing the formation of TiO₂ nanoparticles on the substrate of Ti₃C₂ MXene. (c-f) The FFT patterns of the area marked by (c) and (e) pink, (d) and (f) yellow box in (a) and (b), compared to the simulated diffractions as insets. The TiO₂ is identified as anatase phase. Additionally, the Ti₃C₂ diffraction spots marked by the blue arrows.

Figure S5. Other orientation relationship between anatase TiO_2 and Ti_3C_2 MXene. (a-b) HAADF STEM images showing the formation of TiO_2 nanoparticles on the substrate of Ti_3C_2 MXene. (b-c) The FFT patterns of the area marked by (b) blue, (c) pink box in (a), compared to the simulated diffractions as insets. The TiO_2 is identified as anatase phase along the [010] axis.

Figure S6 (a) A cross-sectional STEM image of an incomplete exfoliated Ti_3AlC_2 MAX phase, showing the generation of large amount of defects. (b) A plan-view STEM image showing the defects in the Ti_3C_2 MXene layer. The only defect found at atomic scale is the Ti-vacancy (or accumulation of many Ti-vacancies) as shown by the red arrowheads.

Figure S7 (a-b) Hirshfeld charge of intact $\rm Ti_3C_2$ and $\rm Ti_3C_2$ containing Ti-vacancies by ReaxFF calculation .

ure S8 (a) A HAADF-STEM image showing the formation of TiO_2 nanoparticles (white contrast) along the edges and vertex of the Ti_3C_2 flake. (b) Inside the Ti_3C_2 layer, almost every nanoparticle is accompanied with a 'hole' nearby, which is a Ti-vacancy rich area. (c) With more and more TiO_2 nanoparticles appeared, there are more holes while the size of holes become large.

Molar Fraction	Reaction Equation	ΔG (
		kJ/mol)
0.000	$O_2 \rightarrow O_2$	0
0.167	0.833 O ₂ + 0.167 Ti ₃ C ₂ →	-627.1
	0.5 TiO ₂ + 0.333 CO ₂	
0.250	$0.75 O_2 + 0.25 Ti_3C_2 \rightarrow$	-682.5
	0.75 TiO ₂ + 0.5 C	
0.286	0.714 O ₂ + 0.286 Ti ₃ C ₂ →	-657.0
	0.286 Ti ₃ O ₅ + 0.571 C	
0.545	0.455 O ₂ + 0.545 Ti ₃ C ₂ →	-469.8
	0.182 Ti ₃ O ₅ + 1.091 TiC	
0.571	0.429 O ₂ + 0.571 Ti ₃ C ₂ →	-449.6
	0.286 Ti ₂ O ₃ + 1.143 TiC	
0.667	0.333 O ₂ + 0.667 Ti ₃ C ₂ →	-366.6
	1.333 TiC + 0.667 TiO	
1.000	$Ti_3C_2 \rightarrow 0.333 Ti_8C_5 +$	-29.20
	0.333 TiC	

Table S1: Ti_3C_2 -O₂ Reactions (Molar Fraction of Ti_3C_2 from 0.000-1.000)

Table S2: TiC (Ti_3C_2 with large amount of ordered Ti-vacancies)-O₂ Reactions (Molar Fraction of TiC from 0.000-1.000)

Molar Fraction	Reaction Equation	ΔG (kJ/mol)
0.000	$O_2 \rightarrow O_2$	0
0.333	0.667 O ₂ + 0.333 TiC \rightarrow	-459.6
	0.333 TiO ₂ + 0.333 CO ₂	
0.500	0.5 O ₂ + 0.5 TiC \rightarrow 0.5	-431.3
	TiO ₂ + 0.5 C	
0.545	0.455 O ₂ + 0.545 TiC \rightarrow	-392.3
	0.182 Ti ₃ O ₅ + 0.545 C	
1.000	$TiC \rightarrow TiC$	0

Molar Fraction	Reaction Equation	ΔG (
		kJ/mol)
0.000	$H_2O \rightarrow H_2O$	0
0.143	0.857 H ₂ O + 0.143 Ti ₃ C ₂ →	-96.90
	0.286 H ₄ C + 0.429 TiO ₂ +	
	0.286 H ₂	
0.176	0.824 H ₂ O + 0.176 Ti ₃ C ₂ →	-114.5
	0.353 H ₄ C + 0.118 TiH ₂ +	
	0.412 TiO ₂	
0.186	0.814 H ₂ O + 0.186 Ti ₃ C ₂ →	-118.6
	0.163 Ti ₃ O ₅ + 0.372 H ₄ C +	
	0.07 TiH ₂	
0.192	0.808 H ₂ O + 0.192 Ti ₃ C ₂ →	-119.7
	0.269 Ti ₂ O ₃ + 0.385 H ₄ C +	
	0.038 TiH ₂	
0.625	0.375 H ₂ O + 0.625 Ti ₃ C ₂ →	
	0.125 Ti ₂ O ₃ + 0.375 TiH ₂ +	-104.0
	1.25 TiC	
0.667	0.333 H ₂ O + 0.667 Ti ₃ C ₂ →	-100.9
	0.333 TiO + 0.333 TiH ₂ +	
	1.333 TiC	
0.750	0.25 H ₂ O + 0.75 Ti ₃ C ₂ →	-90.11
	0.5 Ti2HC + 0.25 TiO + TiC	
1.000	$Ti_3C_2 \rightarrow 0.333 Ti_8C_5 +$	-29.20
	0.333 TiC	

Table S3: Ti_3C_2 -H₂O Reactions (Molar Fraction of Ti_3C_2 from 0.000-1.000)