Supporting Information

Structurally ordered PtSn intermetallic nanoparticles supported on ATO for methanol oxidation reaction

Wei Chen^{a,b}, Zhao Lei^{a,b}, Tang Zeng^{a,b}, Liang Wang^{a,b}, Niancai Cheng^{a,b*}, Yangyang

Tan^{a,b}, and Shichun Mu*^c

^a College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108 China.

E-mail: niancaicheng@fzu.edu.cn (N.C. Cheng).

^bKey Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou, 350108, China

^c State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.

EXPERIMENTAL SECTION

The preparation of ATO: The method for preparing ATO nanoparticles is similar to that described by Lee et al. 1 SnCl₄·5H₂O (10.6 g), SbCl₃ (0.35 g), HCl (4.6 mL), and 50 mL deionized water were added to a three-neck flask equipped with a condenser. The NaOH (6 g) dissolved in 100 mL deionized water were poured into above solution. The mixtures were heated upto 100 °C with mild stirring under an N₂ atmosphere, and kept at 100 °C for 2 h. After the mixture cooled down to room temperature, the resulting solid were washed three times with deionized water. The powder freeze dried for 12 h and then calcined at 500 °C for 2 h. Finally the powder was ground to obtain ATO support.

The preparation of catalysts: Using a polyol reduction method, ATO (100 mg), $H_2PtCl_6 \cdot 6H_2O$ (66 mg) and NaOH (500 mg) were added to a three-necked flask containing 80 mL ethylene glycol. The solution was heated to 200 °C under N₂ atmosphere for 5 minutes, 0.5 hours, 2 hours, 3 hours (the samples were labeled as Pt/ATO-200-5min, Pt/ATO-200-0.5h, Pt/ATO-200-2h, Pt/ATO-200-3h). After cooling to room temperature, the as-prepared catalysts were collected by centrifugation and were washed three times with deionized water, and then freeze-dried. For comparision, we also prepared catalyst using same method at 160 °C (labeled as Pt/ATO-160-2h).

The synthesis of PtSn/ATO catalysts: $H_2PtCl_6 \cdot 6H_2O$ (0.127 mmol), $SnCl_4 \cdot 5H_2O$ (0.127 mmol) as precursors were added to a three-necked flask containing 60 mL ethylene glycol. The solutions were heated to 200 °C and the solution changed to black. After reaction for 2 h at 200 °C and then cooling to the room temperature, ATO (100 mg) was added into black solution and stired for 1 h, the PtSn/ATO catalyst was collected by centrifugation and was washed three times with deionized water, and then freeze-dried.

Electrochemical Characterization: Electrochemical experiments were carried out

on a CHI 660E electrochemistry station using a three electrode system at room temperature. Ag/AgCl (saturated KCl) electrode, Pt wire and glassy-carbon electrode (GCE, diameter 5 mm) coated with catalysts were used as the counter, reference electrode and working electrode respectively. Catalyst ink for electrochemical study was prepared by ultrasonically mixting of 2 mg catalyst, 1 mg carbon balck (Vulcan XC-72), 1 mL 2-propanol and 20 μ L Nafion solution (5 wt %). 4 μ g_{pt} of catalyst ink was deposited onto the GCE, and dried in the air. Cyclic voltammetry was tested in a 0.5 M N₂-saturated H₂SO₄ electrolyte and the methanol oxidation reaction was performed in 0.5 M H₂SO₄ + 1 M methanol between 0.05 V and 1.2 V at a scan of 50 mV s⁻¹. For CO stripping experiment, CO was bubbled through the 0.5 M H₂SO₄ electrolyte for 20 min when the electrode potential was held at 0.05 V vs. RHE. N₂ was then bubbled to remove the free CO in the electrolyte. Then, the CO stripping voltammetry was performed between 0.05 V and 1.2 V at a scan of 50 mV s⁻¹.

Catalysts characterization: The morphology of the samples were characterized by aberration correction field emission transmission electron microscope (Titan G2 60-300 with image corrector). X-ray powder diffraction (XRD) was measured on Rigaku ULTIMA III. X-ray photoelectron spectroscopy (XPS) characterization was obtained on VG ESCALAB 250 (corrected by referencing the energies of the C 1s peak at 284.6 eV). The Pt content of catalysts were tested through inductively coupled plasma-optical emission spectrometer (ICP-OES, iCAP7000).

Figure S1. TEM of ATO support.

Figure S2. TEM of Pt/ATO-200-5min.

Figure S3. TEM of Pt/ATO-200-2h.

Figure S4. (a) and (b)TEM of Pt/ATO-160-2h. (C) XRD of Pt/ATO-160-2h and Pt/ATO-160-2h heated up to 200 $^{\circ}$ C for 2 h in EG solution.

Figure S5. XPS spectra of Pt 4f for JM Pt/C and Pt/ATO-160-2h catalysts.

Figure S6. (a) XRD of Pt/ATO-160-2h and Pt/ATO-160-2h annealing at 300°C in H_2/N_2 (denoted as Pt/ATO-160-2h-H₂) for 2h. (b) CV curves of Pt/ATO-160-2h, Pt/ATO-160-2h-H₂ and Pt/ATO-200-3h catalysts in 0.5 M H₂SO₄ + 1 M CH₃OH solution with a sweep rate of 50 mV s⁻¹.

Figure S7. (a) XRD of Pt/ATO-160-2h, PtSn/ATO catalysts. (b) CV curves of Pt/ATO-160-2h, PtSn/ATO and Pt/ATO-200-3h catalysts in 0.5 M $H_2SO_4 + 1$ M CH₃OH solution with a sweep rate of 50 mV s⁻¹. (c) Chronoamperometric curves of Pt/ATO-160-2h, PtSn/ATO and Pt/ATO-200-3h catalysts in N₂-saturated 0.5 M $H_2SO_4 + 1$ M CH₃OH solution at constant voltage 0.6 V for 60 mins.

Figure S8. Cyclic voltammogram of Pt/C catalyst in N_2 -saturated 0.5 M $H_2SO_4 + 1$ M CH₃OH solution at scan rate of 50 mV s⁻¹ during the durability tests.

Figure S9. CO stripping patterns of Pt/ATO-160-2h, PtSn/ATO and Pt/ATO-200-3h catalysts in 0.5 M of H₂SO₄.

Figure S10. CO stripping patterns of Pt/ATO-160-2h, Pt/ATO-160-2h-H₂ and Pt/ATO-200-3h catalysts in 0.5 M of H_2SO_4 .

-200
1
) (])

 Table S1. ICP-OES of Pt and Sn mass percentage of different catalysts.

1		5		
Samples	${\rm Sn^{4+}3d_{5/2}}$	Sn ⁰ 3d _{5/2}	${\rm Sn^{4+}3d_{3/2}}$	$Sn^03d_{3/2}$
ATO	486.8	-	495.2	-
Pt/ATO-200-	487.04	485.38	495.45	493.79
5min				
Pt/ATO-200-0.5h	486.99	485.35	495.43	493.87
Pt/ATO-200-2h	486.9	485.28	495.31	493.78
Pt/ATO-200-3h	486.63	485.2	494.95	493.55

 Table S2. XPS spectra of different catalysts with Sn 3d.

 Table S3. XPS spectra of different catalysts with Pt 4f.

Samples	Pt ⁰ 4f _{7/2}	$Pt^{2+}4f_{7/2}$	$Pt^{0}4f_{5/2}$	$Pt^{2+}4f_{5/2}$
JM Pt/C	71.45	72.60	74.77	75.91
Pt/ATO-200-	70.78	71.82	74.06	75.22
5min				
Pt/ATO-200-0.5h	70.84	71.93	74.21	75.37
Pt/ATO-200-2h	71.18	72.32	74.54	75.7
Pt/ATO-200-3h	71.23	72.36	74.56	75.74

Samples	Pt/C	Pt/ATO-200	Pt/ATO-200	Pt/ATO-	Pt/ATO-200
_		-5min	-0.5h	200-2h	-3h
ECSA	52	41.2	32.7	28.7	25.4
$(m^2 g^{-1})$					

 Table S4. ECSA of Pt/C and Pt/ATO-200 series catalysts.

Catalysts	Onset Potential (V vs.	Peak currents	nts Electrolytes	
	RHE) from CO	MA (mA mg_{Pt}^{-1})		
Pt/ATO-200-3h	0.36	1520	0.5M H ₂ SO ₄ + 1M CH ₃ OH	This
				work
Pt ₃ V/C	~0.42	~490	0.1 M HClO ₄ + 1 M CH ₃ OH	2
Pt ₃ Ti/C	~0.42	~380	0.1 M HClO ₄ + 1 M CH ₃ OH	2
PtRu NWs	-	820	0.1 M HClO ₄ + 0.5 M CH ₃ OH	3
JM-PtRu/C	~0.4	1253.5	0.5 M H ₂ SO ₄ + 1 M CH ₃ OH	4
Pt/CeO2-P	~0.6	714	0.5 M H ₂ SO ₄ + 1 M CH ₃ OH	5
PtFe@PtRuFe	0.39	690	0.1 M HClO ₄ + 0.5 M CH ₃ OH	6
PtPb CNCs	-	970	0.1 M HClO ₄ + 0.5 M CH ₃ OH	7
PtPb _{0.27} NWs	-	1210	0.1 M HClO4 + 0.15 M CH3OH	8
PtSn	-	350	$0.5 \text{ M H}_2\text{SO}_4 + 0.5 \text{ M CH}_3\text{OH}$	9
PtRuCu/C	~0.6	1350	0.1 M HClO ₄ + 1 M CH ₃ OH	10
Pd@PtNi NPs	~0.65	782	$0.5 \text{ M H}_2\text{SO}_4 + 0.5 \text{ M CH}_3\text{OH}$	11
Pt ₉₄ Zn ₆ NWs	~0.65	511.3	0.1 M HClO ₄ + 0.2 M CH3OH	12

Table S5. Electrochemical activity of the catalysts reported in the literature currentlyand compared with our Pt/ATO-200-3h catalyst.

- 1. K. Lee, I. Park, Y. Cho, D. Jung, N. Jung, H. Park and Y. Sung, *Journal of Catalysis*, 2008, **258**, 143-152.
- 2. Z. M. Cui, H. Chen, M. T. Zhao, D. Marshall, Y. C. Yu, H. Abruna and F. J. DiSalvo, *Journal of the American Chemical Society*, 2014, **136**, 10206-10209.
- 3. L. Huang, X. Zhang, Q. Wang, Y. Han, Y. Fang and S. Dong, *Journal of the American Chemical Society*, 2018, **140**, 1142-1147.
- J. Xie, Q. Zhang, L. Gu, S. Xu, P. Wang, J. Liu, Y. Ding, Y. F. Yao, C. Nan, M. Zhao, Y. You and Z. Zou, *Nano Energy*, 2016, **21**, 247-257.
- 5. L. Tao, Y. Shi, Y.-C. Huang, R. Chen, Y. Zhang, J. Huo, Y. Zou, G. Yu, J. Luo, C.-L. Dong and S. Wang, *Nano Energy*, 2018, **53**, 604-612.
- 6. Q. Wang, S. Chen, P. Li, S. Ibraheem, J. Li, J. Deng and Z. Wei, *Applied Catalysis B: Environmental*, 2019, **252**, 120-127.
- L. Huang, X. P. Zhang, Y. J. Hang, Q. Q. Wang, Y. X. Fang and S. J. Dong, *Chemistry Of Materials*, 2017, 29, 4557-4562.
- 8. N. Zhang, S. Guo, X. Zhu, J. Guo and X. Q. Huang, *Chemistry Of Materials*, 2016, **28**, 4447-4452.
- Q. L. Chen, Y. N. Yang, Z. M. Cao, Q. Kuang, G. F. Du, Y. Q. Jiang, Z. X. Xie and L. S. Zheng, Angew. Chem.-Int. Edit., 2016, 55, 9021-9025.
- 10. S. Xue, W. Deng, F. Yang, J. Yang, I. S. Amiinu, D. He, H. Tang and S. Mu, *ACS Catalysis*, 2018, **8**, 7578-7584.
- 11. Y. Yan, H. Shan, G. Li, F. Xiao, Y. Jiang, Y. Yan, C. Jin, H. Zhang, J. Wu and D. Yang, *Nano letters*, 2016, **16**, 7999-8004.
- 12. Y. Xu, X. Cui, S. Wei, Q. Zhang, L. Gu, F. Meng, J. Fan and W. Zheng, *Nano Research*, 2019, **12**, 1173-1179.