## Supporting Information

### Tunable energy storage capacity of two-dimensional $Ti_3C_2T_x$

# modified by a facile two-step pillaring strategy for high performance

### supercapacitor electrodes

Yahui Li<sup>1</sup>, Yanan Deng<sup>1</sup>, Jianfeng Zhang<sup>1\*</sup>, Ye Han<sup>2\*</sup>, Weiwei Zhang<sup>1</sup>, XiaoYan

Yang<sup>1</sup>, Xin Zhang<sup>1</sup>, Wan Jiang<sup>3</sup>

<sup>1</sup>College of Mechanics and Materials, Hohai University, Nanjing 211100, China

<sup>2</sup>School of Materials Science and Engineering, Shandong University of Science and

Technology, Qingdao, Shandong 266590, China

<sup>3</sup>College of Materials Science and Engineering, Donghua University, Shanghai

210050, China

\*Corresponding authors, email address: jfzhang@hhu.edu.cn, hanye@sdust.edu.cn

|                   | Positive charge | Ionic radius(Å) | 2θ(°) | d-spacing(Å) | The number of fixed groups |
|-------------------|-----------------|-----------------|-------|--------------|----------------------------|
| Li <sup>+</sup>   | 1               | 0.76            | 8.22  | 10.75        | 2                          |
| $K^+$             | 1               | 1.38            | 7.08  | 12.48        | 2                          |
| $\mathrm{NH_4}^+$ | 1               | 1.43            | 6.96  | 12.69        | 4 <x<6< td=""></x<6<>      |
| $Mg^{2+}$         | 2               | 0.72            | 7.30  | 12.10        | 4                          |
| Ca <sup>2+</sup>  | 2               | 1.00            | 7.24  | 12.20        | 4                          |
| Al <sup>3+</sup>  | 3               | 0.535           | 7.02  | 12.58        | 6                          |

Table S1 The cationic property and the d-spacing values



Fig. S1 HRTEM of  $Ti_3C_2T_x$ -Li<sup>+</sup>; (b)  $Ti_3C_2T_x$ -Al<sup>3+</sup> The HRTEM of  $Ti_3C_2T_x$ -Li<sup>+</sup> and  $Ti_3C_2T_x$ -Al<sup>3+</sup> is shown in the Fig. S1. The apparent layered structure is presented, and the test results are consistent with XRD

| `                      | $Ti_3C_2T_x$ -  | $Ti_3C_2T_x$ - | $Ti_3C_2T_x$ -    | $Ti_3C_2T_x$ - | $Ti_3C_2T_x$ -   | $Ti_3C_2T_x$ - |
|------------------------|-----------------|----------------|-------------------|----------------|------------------|----------------|
|                        | Li <sup>+</sup> | $K^+$          | $\mathrm{NH_4^+}$ | $Mg^{2+}$      | Ca <sup>2+</sup> | $Al^{3+}$      |
| Ti-C 2p <sup>3/2</sup> | 46%             | 37%            | 40%               | 45%            | 54%              | 45%            |
| Ti-O 2p <sup>3/2</sup> | 29%             | 38%            | 38%               | 27%            | 41%              | 30%            |
| Ti-C 2p <sup>1/2</sup> | 24%             | 18%            | 21%               | 27%            | 42%              | 22%            |
| Ti-O 2p <sup>1/2</sup> | 1%              | 8%             | 2%                | 2%             | 0                | 4%             |

Table S2 Bonding ratio in Ti 2p of the similar pillared modified  $Ti_3C_2T_x$ 



Fig. S2 C 1s spectra of (a)  $Ti_3C_2T_x$ -Li<sup>+</sup>. (b)  $Ti_3C_2T_x$ -K<sup>+</sup>. (c)  $Ti_3C_2T_x$ -NH<sub>4</sub><sup>+</sup>. (d)  $Ti_3C_2T_x$ -Mg<sup>2+</sup>. (e)  $Ti_3C_2T_x$ -Ca<sup>2+</sup>. (f)  $Ti_3C_2T_x$ -Al<sup>3+</sup>.

|                     | $Ti_3C_2T_x$ - $Li^+$ | $Ti_3C_2T_x$ - | $Ti_3C_2T_x$ -        | $Ti_3C_2T_x$ - | $Ti_3C_2T_x$ -   | $Ti_3C_2T_x$ - $Al^{3+}$ |
|---------------------|-----------------------|----------------|-----------------------|----------------|------------------|--------------------------|
|                     |                       | $K^+$          | $\mathrm{NH_{4}^{+}}$ | $Mg^{2+}$      | Ca <sup>2+</sup> |                          |
| C-C 2p <sup>2</sup> | 46%                   | 53%            | 71%                   | 65%            | 66%              | 75%                      |
| С-ОН                | 7%                    | 7%             | 4%                    | 2%             | 7%               | 5%                       |
| О=С-ОН              | 1%                    | 2%             | 6%                    | 1%             | 4%               | 3%                       |
| C-Ti                | 46%                   | 38%            | 19%                   | 32%            | 22%              | 18%                      |

Table S3 Bonding ratio in C 1s of the similar pillared modified Ti<sub>3</sub>C<sub>2</sub>



Fig. S3 Electrochemical performance of the  $Ti_3C_2T_x$ -Al<sup>3+</sup>||  $Ti_3C_2T_x$ -Al<sup>3+</sup> SC device in 1 M KOH electrolyte: (a) Cyclic voltammetric curves at various scan rates (5-300 mV s<sup>-1</sup>), (b) Constant current charge-discharge curve at various current densities (0.5-3 A g<sup>-1</sup>), (c) Specific capacitance and Coulomb efficiency *vs.* current densities (0.5-3 A g<sup>-1</sup>), (d) Ragone plots, (e) The EIS curves, (f) Capacitance retention, of the symmetrical supercapacitor

| Electrode material                           | Specific capacitance  | Scan rate (mV s <sup>-1</sup> ) | Electrolyte | Ref. |
|----------------------------------------------|-----------------------|---------------------------------|-------------|------|
| Ti <sub>3</sub> C <sub>2</sub>               | 100F g <sup>-1</sup>  | 2                               | $H_2SO_4$   | 1    |
| Ti <sub>3</sub> C <sub>2</sub>               | 117 F g <sup>-1</sup> | 2                               | КОН         | 2    |
| Ti <sub>3</sub> C <sub>2</sub>               | 70 F g <sup>-1</sup>  | 20                              | EMITSI      | 3    |
| $Ti_3C_2T_x$                                 | 63 F g <sup>-1</sup>  | 5                               | КОН         | 4    |
| $d-Ti_3C_2T_x$ paper intercalated            | 122 F g <sup>-1</sup> | 5                               | КОН         | 4    |
| $d-Ti_3C_2T_x$ film on NF                    | 140 F g <sup>-1</sup> | 5                               | КОН         | 5    |
| $TiO_2$ - $Ti_3C_2$                          | 143 F g <sup>-1</sup> | 5                               | КОН         | 6    |
| Delaminated-Ti <sub>3</sub> C <sub>2</sub>   | 150 F g <sup>-1</sup> | 5                               | $H_2SO_4$   | 7    |
| CNT-Ti <sub>3</sub> C <sub>2</sub>           | 85 F g <sup>-1</sup>  | 2                               | EMITSI      | 8    |
| Ti <sub>3</sub> C <sub>2</sub> -216h etching | 118 F g <sup>-1</sup> | 5                               | КОН         | 9    |
| Li-intercalated $Ti_3C_2T_x$                 | 134 F g <sup>-1</sup> | 20                              | КОН         | 10   |
| $Ti_3C_2T_x$ -Al <sup>3+</sup>               | 154 F g <sup>-1</sup> | 5                               | КОН         | This |
|                                              |                       |                                 |             | work |

Table S4 Comparison of electrochemical performance of  $Ti_3C_2T_x$  electrode

Table S5 Bader charge distributions of different cations pillaring  $Ti_3C_2T_x$ 

| Cations                         | Al <sup>3+</sup> | $\mathrm{NH_{4}^{+}}$ | $Mg^{2+}$ | $K^+$ | Ca <sup>2+</sup> | Li+  |
|---------------------------------|------------------|-----------------------|-----------|-------|------------------|------|
| Bader charge of the nearest Ti  | 2.60             | 2.58                  | 2.41      | 2.23  | 2.20             | 2.19 |
| Number of outer electrons of Ti | 4                | 4                     | 4         | 4     | 4                | 4    |
| Charge transfer                 | 1.40             | 1.42                  | 1.59      | 1.77  | 1.80             | 1.81 |

### References

- Y. Dall'Agnese, M. R. Lukatskaya, K. M. Cook, P. L. Taberna, Y. Gogotsi and P. Simon, *Electrochem. Commun.*, 2014, 48, 118-122.
- 2. S. Y. Lin and X. Zhang, J. Power Sources, 2015, 294, 354-359.
- 3. Z. Lin, D. Barbara, P. L. Taberna, K. L. V. Aken, B. Anasori, Y. Gogotsi and P. Simon, *J. Power Sources*, 2016, **326**, 575-579.
- 4. G. Minoli, *Science*, 2013, **341**, 1502-1505.
- 5. S. Xu, G. Wei, J. Li, Y. Ji, N. Klyui, V. Izotov and W. Han, *Chem. Eng. J.*, 2017, **317**.
- 6. L. Sheng, L. Jiang, T. Wei and Z. Fan, *Small*, 2016, **12**, 5217-5227.
- M. Ghidiu, M. R. Lukatskaya, M. Q. Zhao, Y. Gogotsi and M. W. Barsoum, *Nature*, 2014, 516, 78-81.
- Y. Dall'Agnese, P. Rozier, P. L. Taberna, Y. Gogotsi and P. Simon, J. Power Sources, 2016, 306, 510-515.
- 9. J. Zhu, Y. Tang, C. Yang, F. Wang and M. Cao, J. Electrochem. Soc., 2016, 163, A785-A791.
- F. X. Wang, X. W. Wu, X. H. Yuan, Z. C. Liu, Y. Zhang, L. J. Fu, Y. S. Zhu, Q. M. Zhou, Y. P. Wu and W. Huang, *Chem. Soc. Rev.*, 2017, 46, 6816-6854.