Electronic Supplementary Material

Iron Phosphorus Trichalcogenide Ultrathin Nanosheets: Enhance Photoelectrochemical Activity under Visible-light Irradiation

Hao Huang^{‡a}, Mengxiang Shang^{‡b}, Yongjin Zou^a, Wenbo Song^{b*} and Ying Zhang^{a*}

^a Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China ^b College of Chemistry, Jilin University, Changchun 130012, P.R. China

[‡] Hao Huang and Mengxiang Shang contributed equally to this work.

Figure S1. XRD pattern of NaCl template.

Figure S2. SEM images of NaCl template.

Figure S3. SEM images of FePS₃ nanosheets coated NaCl.

Figure S4. SEM images of FePS₃-20 and FePS₃-40 samples.

Figure S5. TEM images of various FePS₃ samples.

Figure S6. Nyquist plots of FePS₃-0, FePS₃-60 and FePS₃-60-GOD samples.

Figure S7. Photocurrent of FePS₃ PEC biosensor at different applied potential with addition of 0.1 mM glucose.

Figure S8. XRD pattern and SEM image of FePS₃-60 sample after 2 h continuous photoelectrochemical test.

sensor with	the other sim	ular configur	of the	reviously	reported	uochennear	glucose
sensor with the other similar configurations previously reported.							
	-				~ · ·		

Method	Linear Range	Detection Limit	Reference
Zinc oxide	5.7~10000 μM	\	1
Ag ₂ S/SnO ₂ /ITO	100~12200 μM	32.4 µM	2
ZnS-CdS/MWCNT	10~1000 μM	3 µM	3
BiOI/NiO/ITO	5~10000 μM	1.6 µM	4
ZnO-Au@CdS	0~400 μM	0.14 µM	5
AuNi arrays	0.01~13 mM	3 µM	6
Au-TiO ₂	0.1~100 µM	0.023 µM	7
gold nanoparticle	1.0~1000 µM	0.46 µM	8
MnO ₂ -C ₃ N ₄ -TiO ₂	4~1750 μM	4 µM	9
FePS ₃ nanosheets	0.1~15000 μM	0.042 µM	This work

Sample	Added (mM)	Found (mM)	Recovery (%)	RSD (%) / n=5
1	0	4.81	\	1.9
2	1.0	5.89	101.3	2.1
3	5.0	9.77	99.6	3.8
4	10.0	14.85	100.5	1.5

Table S2. Analysis of real samples

Reference

1. L. Xia, J. Song, R. Xu, D. Liu, B. Dong, L. Xu, H. Song, *Biosensors and Bioelectronics*, 2014, 59, 350-357.

 X. Zhang, M. Liu, H. Liu, S. Zhang, *Biosensors and Bioelectronics*, 2014, 56, 307-312.

3. Ö. Sağlam, Y. Dilgin, *Electroanalysis*, 2017, 29, 1368-1376.

4. L. Zhang, Y. Ruan, Y. Liang, W. Zhao, X. Yu, J. Xu, H. Chen, ACS Applied Material Interfaces, 2018, 10, 3372-3379.

5. Y. Zhao, J. Gong, X. Zhang, R. Kong, F. Qu, Sensors and Actuators B: Chemical, 2018, 255, 1753-1761.

6. L.Wang, W. Zhua, W. Lu, L. Shi, R. Wang, R. Pang, Y. Cao, F. Wang, X. Xu, *Biosensors and Bioelectronics*, **2019**, *142*, 111577.

Y. Zhang, M. Xu, P. Gao, W. Gao, Z. Bian, N. Jia, *Microchimica Acta*, 2019, 186, 326.

8. L. Cao, P. Wang, L. Chen, Y. Wu, J. Di, RSC Advance, 2019, 9, 15307-15313.

9. B. Çakıroğlu, Y. C. Demirci, E. Gökgöz, M. Özacar, Sensors and Actuators B: Chemical, 2019, 282, 282-289.