ELECTRONIC SUPPLEMENTARY INFORMATION

Epitaxial Stabilization *versus* Interdiffusion: Synthetic Routes to Metastable Cubic HfO₂ and HfV₂O₇ from the Core—Shell Arrangement of Precursors

Nathan A. Fleer,^{a,b} Melonie P. Thomas,^c Justin L. Andrews,^{a,b} Gregory R. Waetzig,^{a,b} Oscar Gonzalez,^a Guan-Wen Liu,^{a,b} Beth S. Guiton,^{c*} and Sarbajit Banerjee^{a,b*}

^a.Department of Chemistry, Texas A&M University, 3255 TAMU, 580 Ross St, College Station, Texas 77843, USA.

^b Department of Materials Science and Engineering, Texas A&M University, 575 Ross St, College Station, Texas 77843, USA.

^c Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, USA

Figure S1: Characterization of VO₂ nanocrystals. TEM images of A) VO₂ nanowires prepared from the hydrothermal reduction of V_2O_5 by acetone and B) quasi-spherical VO₂ nanocrystals prepared by sol—gel condensation and hydrothermal treatment. C) Powder XRD patterns of VO₂ nanowires (black) and ultrasmall VO₂ nanocrystals (red). The tick marks denote the reflections of the M1 phase of VO₂ (PDF: 43-1051).

Figure S2: Indexed powder XRD patterns acquired at room temperature along the synthetic pathway. A) XRD pattern of VO₂ nanowires prepared by acetone reduction of V₂O₅ (black). B) XRD pattern of VO₂ nanowires coated with an amorphous HfO₂ shell (red). The diffuse scattering background derived from amorphous HfO₂ is clearly apparent. C) Powder XRD pattern acquired subsequent to annealing showing the presence of rhombohedral V₂O₃ and cubic HfO₂ (maroon). D) Powder XRD pattern after acid etching indicating the stabilization of cubic HfO₂ (green). An indexing and pattern legend is shown in the top right of panel B. The XRD patterns are indexed to the following phases: VO₂ (M1) = 43-1051 and V₂O₃ (R) = 85-1411.

Figure S3: Indexed powder XRD patterns acquired at room temperature along the synthetic pathway. A) XRD pattern of quasi-spherical VO₂ nanocrystals prepared by sol—gel condensation and hydrothermal treatment (black). B) XRD pattern of quasi-spherical VO₂ nanocrystals coated with amorphous HfO₂ shell (red). C) Powder XRD pattern acquired subsequent to annealing showing the presence of rhombohedral V₂O₃ and cubic HfO₂ (maroon). D) Powder XRD pattern after acid etching indicating the stabilization of cubic HfO₂ (green). An indexing and pattern legend is shown in the top right of panel B. The XRD patterns are indexed to the following phases: VO₂ (M1) = 43-1051 and V₂O₃ (R) = 85-1411.

Figure S4: TEM and SEM images corresponding to synthetic steps involved in the stabilization of cubic HfO₂. A) TEM image (top) and SEM image (bottom) of M1-phase VO₂ quasi-spherical nanocrystals. B) TEM and SEM images of quasi-spherical VO₂ nanocrystals coated with an amorphous HfO₂ shell. C) TEM and SEM images of V₂O₃@cubic-HfO₂ core—shell structures obtained upon annealing VO₂@amorphous-HfO₂ structures at 650°C. D) TEM and SEM image of cubic HfO₂ after acid etching of the V₂O₃ core.

Figure S5: Cross-sectional TEM image and EDX line scan of an ultramicrotomed $V_2O_3@HfO_2$ core—shell nanowire. A) Crosssectional TEM image of a $V_2O_3@HfO_2$ core—shell nanowire; B) corresponding EDX map of the $V_2O_3@HfO_2$ nanowire; and C) EDX line scan along the arrow in panel B. The vanadium signal (red) is highly concentrated within the core, whereas the Hf (green) signal derives predominantly from shell with oxygen (blue) distributed throughout the nanowire.

Figure S6: The scale bars of (a-c) indicate 1 nm. (a) TEM image of the interface of HfO_2 and V_2O_3 . (b) and (c) are Fourier filtered TEM images of two interfacing phases, V_2O_3 and HfO_2 , respectively. The superimposed red and olive color spheres represents V and Hf atoms, respectively. (d) shows the epitaxial direction (white arrow) in the interfacing phases (simulated image from CrystalMaker[®] software). The FFTs (e and f) obtained from (a) for the two interfacing phases can be indexed to [211] and [001] zone axes of cubic HfO_2 and rhombohedral V_2O_3 , respectively.

Figure S7: FTIR spectrum of cubic HfO₂ after acid treatment. The peak of 3315 cm⁻¹ reveals the presence of Hf-OH.

Table S1: Rietveld refined values of HfO₂ (C).

HfO ₂ (C) // $a/b/c$ = 5.04793(22)Å // Space Group = $Fm\bar{3}m$ // $\alpha/\beta/\gamma$ = 90.0° // Vol. = 128.629(16)Å ³									
χ ² = 4.712			wRp = 6.68%			Rp	Rp = 5.08%		
Atom Label	Position	Mult.		x	У		Z	Occupancy	
Hf	а	4		0.00(0)	0.00(0)		0.00(0)	1.000(0)	
0	С	8		0.25(0)	0.25(0)		0.25(0)	1.000(0)	

Also shown are fit quality statistics such as the goodness of fit (χ^2), the weighted goodness of fit (wRp) and individual point residuals (*R*p). These values demonstrate the high degree of agreement when comparing calculated and observed patterns.