Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Ultrathin MXene/Aramid Nanofiber Composite Paper with Excellent Mechanical Property for Efficient Electromagnetic Interference Shielding

Fan Xie^a, Fengfeng Jia^a, Longhai Zhuo^a, Zhaoqing Lu^{a,*}, Lianmeng Si^a, Jizhen Huang^a, Meiyun Zhang^a, Qin

Ma^a

Figure S1. (a) Digital image of Ti_3AlC_2 power. (b) SEM image of Ti_3AlC_2 power. (c) SEM image of m-d- $Ti_3C_2T_x$.

(d) SEM image of d-Ti₃C₂T_x.

Figure S2. (a) Digital image of PPTA fibers. (b) Tyndall effect of ANFs/DMSO/KOH system. (c) The Tyndall effect of ANFs/water system and AFM micrograph of ANFs. (d) Deprotonation process of PPTA fibers.

Figure S3. (a)The diameter distribution and (b) the length distribution of ANFs.

Figure S4. (a) Surface Zeta potential of ANFs at pH 7. (b) Surface Zeta potential of $d-Ti_3C_2T_x$ flakes at pH 7.

Figure S5. (a) Surface image of d-Ti₃C₂T_x/ANFs composite paper (b) EDS mapping of d-Ti₃C₂T_x/ANFs composite paper (element Ti) indicating the evenly dispersion of d-Ti₃C₂T_x. (c) EDS mapping of d-Ti₃C₂T_x/ANFs composite paper (element N) indicating the evenly dispersion of ANFs.

Table S1.	Basic par	ameters of th	e d-Ti ₃ C ₂ T _x	/ANFs	composite paper.
-----------	-----------	---------------	---	-------	------------------

Samples		Thickness (µm)	Density (g/cm ³)	Resistivity (mΩ·cm)	Conductivity (S·cm ⁻¹)
1	10 wt% d-Ti ₃ C ₂ T _x /ANFs	21±1.3	0.910	3389.333	0.295
2	20 wt% d-Ti ₃ C ₂ T _x /ANFs	23±1.9	0.997	101.903	9.813
3	40 wt% d-Ti ₃ C ₂ T _x /ANFs	22±2.4	1.188	40.280	24.826
4	50 wt % d-Ti ₃ C ₂ T _x /ANFs	20±1.4	1.280	14.367	69.606
5	60 wt % d-Ti ₃ C ₂ T _x /ANFs	17±1.5	1.255	10.032	99.684
6	80 wt % d-Ti ₃ C ₂ T _x /ANFs	20±1.3	1.453	5.768	173.360
7	90 wt% d-Ti ₃ C ₂ T _x /ANFs	15±2.0	1.638	1.592	628.272
8	100 wt % d-Ti ₃ C ₂ T _x	/	1.852	/	3118.820

	Materials	Tensile strength (MPa)	Strain at fracture (%)	Young's modulus (GPa)
1	ANFs	164.04	7.30	2.35
2	10 wt% d-Ti ₃ C ₂ T _x /ANFs	197.09	9.80	2.01
3	20 wt% d-Ti ₃ C ₂ T _x /ANFs	158.53	8.45	1.87
4	40 wt% d-Ti ₃ C ₂ T _x /ANFs	136.55	7.23	1.88
5	50 wt% d Ti ₃ C ₂ T _x /ANFs	83.92	3.96	2.11
6	60 wt% d-Ti ₃ C ₂ T _x /ANFs	80.14	2.20	2.64
7	80 wt% d-Ti ₃ C ₂ T _x /ANFs	66.32	1.80	2.68
8	90 wt% d-Ti ₃ C ₂ T _x /ANFs	33.07	0.56	2.89
9	100 wt% d-Ti ₃ C ₂ T _x	Ро	or mechanical and brittle	to test

Table S2. Mechanical properties of the $d-Ti_3C_2T_x$ /ANFs composite paper.

	Materials	SE _{Total} at 12.4GHz (dB)	SE _A at 12.4GHz (dB)	absorption coefficient at 12.4GHz (%)
1	10 wt% d-Ti ₃ C ₂ T _x /ANFs	4.89	1.54	31.49
2	20 wt% d-Ti ₃ C ₂ T _x /ANFs	12.74	7.11	55.80
3	40 wt% d-Ti ₃ C ₂ T _x /ANFs	19.43	11.31	58.20
4	50 wt% d Ti ₃ C ₂ T _x /ANFs	23.97	13.40	55.90
5	60 wt% d-Ti ₃ C ₂ T _x /ANFs	28.54	17.46	61.17
6	80 wt% d-Ti ₃ C ₂ T _x /ANFs	30.00	17.98	59.93
7	90 wt% d-Ti ₃ C ₂ T _x /ANFs	32.84	20.55	62.57
8	100 wt% d-Ti ₃ C ₂ T _x	38.56	25.49	66.10

Table S3. EMI shielding properties of the $d-Ti_3C_2T_x$ /ANFs composite paper.

Sample	Materials	Thickness (mm)	Tensile strength (MPa)	SE (dB)	Reference
[1]	Graphene pellet	0.050	22	60	[1]
[2]	GP/TiO ₂ -epoxy	0.028	75	11	[2]
[3]	PVA/graphene	0.025	19.2	25.1	[3]
[4]	PVA/GNs/MWCNTs	0.55	82.6	23.51	[4]
[5]	d-Ti ₃ C ₂ T _x /CNFs	0.0167	135.4	25	[5]
[6]	Cellulose/GP/PPy	0.1	90.8	30	[6]
[7]	RGO/MG/PVA	0.36	62.4	20.3	[7]
[8]	PMMA/graphene	2.4	30	19	[8]
[9]	MWCNT/PPCP	2	41	47	[9]
[10]	PANI/FMWCNT/TPU	1	31.75	31.35	[10]
[11]	PC/MWNT	4	36.4	40	[11]
[12]	PMMA/GP	4	48	19	[12]
[13]	PIPD/PDDA	1.1	21.7	17	[13]
[14]	CNT-RN	0.25	22.2	44.7	[14]
[15]	Graphene paper	0.013	54	52.2	[15]
[16]	MWCNT-PMMA	1.1	23.5	30	[16]
[17]	a-MWCNT/PU	1.5	58.5	29	[17]
[18]	PANI-DBSA	0.8	11.04	55	[18]
[19]	MWCNT/ carbon fabrics	0.2	6.83	38	[19]
[20]	20 wt% d-Ti ₃ C ₂ T _x /ANFs	0.023	158.5	12.74	
[21]	40 wt% d-Ti ₃ C ₂ T _x /ANFs	0.022	136.5	19.43	
[22]	50 wt% d-Ti ₃ C ₂ T _x /ANFs	0.020	83.9	23.97	This work
[23]	60 wt% d-Ti ₃ C ₂ T _x /ANFs	0.017	80.1	28.54	

Table S4. Properties comparison of the natural nacre, the $d-Ti_3C_2T_x/ANFs$ composite paper and other EMI shielding materials.

REFERENCES

- 1. Z. Lu, N. T. Alvarez, M. Zhang, M. Haase, R. Malik, D. Mast and V. Shanov, Carbon, 2015, 82, 353-359.
- 2. Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou, X. Xue and Z. Zhang, Small, 2017, 13, 1701388.
- F. Kazushige, G. Mayakrishnan, K. Han-Ki, K. Byoung Suhk and K. Ick Soo, *J Nanosci Nanotechnol*, 2013, 13, 1759-1764.
- 4. J. H. Lin, Z. I. Lin, Y. J. Pan, C. K. Chen, C. L. Huang, C. H. Huang and C. W. Lou, *Macromolecular Materials and Engineering*, 2015, 301, 199-211.
- 5. W. T. Cao, F. F. Chen, Y. J. Zhu, Y. G. Zhang and F. Chen, Acs Nano, 2018, 12, 4583-4593.
- 6. J. Chen, J. Xu, K. Wang, X. Qian and R. Sun, Acs Applied Materials & Interfaces, 2015, 7, 15641.
- 7. B. Yuan, C. Bao, X. Qian, S. Lei, Q. Tai, K. M. Liew and H. Yuan, Carbon, 2014, 75, 178-189.
- 8. H. B. Zhang, Q. Yan, W. G. Zheng, Z. He and Z. Z. Yu, Acs Applied Materials & Interfaces, 2011, 3, 918.
- 9. P. Verma, P. Saini, R. S. Malik and V. Choudhary, Carbon, 2015, 89, 308-317.
- 10. A. P. Sobha, P. S. Sreekala and S. K. Narayanankutty, Progress in Organic Coatings, 2017, 113, 168-174.
- S. G. Pardo, L. Arboleda, A. Ares, X. García, S. Dopico and M. J. Abad, *Polymer Composites*, 2013, 34, 1938-1949.
- 12. F. Sharif, M. Arjmand, A. A. Moud, U. Sundararaj and E. P. Roberts, *Acs Applied Materials & Interfaces*, 2017, **9**, 14171-14179.
- 13. M. H. Al Saleh and U. Sundararaj, Journal of Polymer Science Part B, 2012, 50, 1356-1362.
- 14. L. C. Jia, M. Z. Li, D. X. Yan, C. H. Cui, H. Y. Wu and Z.-M. Li, *Journal of Materials Chemistry C*, 2017, 5, 8944-8951.
- 15. Y. J. Wan, P. L. Zhu, S. H. Yu, R. Sun, C. P. Wong and W. H. Liao, Carbon, 2017, 122, 74-81.
- S. Pande, B. P. Singh, R. B. Mathur, T. L. Dhami, P. Saini and S. K. Dhawan, *Nanoscale Research Letters*, 2009, 4, 327-334.
- 17. T. K. Gupta, B. P. Singh, S. R. Dhakate, V. N. Singh and R. B. Mathur, *Journal of Materials Chemistry A*, 2013, 1, 9138.
- 18. J. D. Sudha, S. Sivakala, K. Patel and P. R. Nair, Composites Science & Technology, 2010, 69, 358-364.
- S. P. Gamage, K. Yang, R. Braveenth, K. Raagulan, H. Kim, L. Yun, C. M. Yang, J. Moon and K. Chai, *Materials*, 2017, 10, 1350.