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. Details Ⅰ of simulation models 

As illustrated by the schematic diagram in Fig. S1, the vesicles are formed by 

self-assembly of amphiphilic molecules, in which the green beads denote hydrophilic head 

groups and blue beads denote hydrophobic tail groups. Each amphiphilic molecule consists of 

one hydrophilic bead and three hydrophobic beads.1,2 The ligand chains are modelled as a 

series of different beads connected into a chain, which totally include four parts: cholesterol 

(purple), backbone (cyan), and two types of binding sites (red and yellow), while receptor 

chains are composed of an anchor bead (purple-blue) at the end and two types of receptor 

beads (pink and orange) arranged alternately in the head. The hydrophobic cholesterol beads 

act as anchors and spontaneously insert into the lipid bilayers of the self-assembling vesicles, 

leaving the other beads pointing outward. A total of thirty ligand chains are grafted and 

randomly distributed on the surface of the vesicle. Acting as fixed points, the anchor beads 

enable the receptor chains to be immobilized on the wall of the flow channel. 

In order to model the transport process of a vesicle in the channel, we choose a 

rectangular simulation box with dimensions of 25rc×80rc×25rc, for which the periodic 

boundary condition is set in the direction of the flow (y-axis). The diameter of the cylindrical 

channel is 24rc, with the length being the same with that of the y-axis. The cylinder channel is 

made of a single layer of frozen DPD beads, which can interact with other beads but are not 

allowed to move. We keep the wall density the same with the fluid density, as the 

significantly enlarged wall density will cause distinct density fluctuations across the channel. 

Due to the soft interaction between DPD beads, the bounce-back boundary condition is 

necessary to be imposed on the surface of the wall with half inter-beads distance (
1

30.5


) to 



3 
 

prevent beads from penetrating it.3 When a DPD beads approach the surface of the wall, its 

tangential and normal velocity component are both reversed. This imposed bounce-back 

reflection is effective to reflect the beads back into the fluid, which is confirmed by Pivkin 

et.al.[3] A bead density of 33 cr    is set, so that the total number of beads in the system is 

150000. By adding the body force Fb to all solvent beads outside the vesicles along the long 

axis of the channel, we can simulate the Poiseuille flow through the channel.4 In the 

beginning of the simulations, we place the ligand-functionalized vesicle on one side of the 

cylindrical channel, which is surrounded by solvent beads. During the first 100τ (t0) of the 

simulation, the body force is fixed at 0. Then, the force Fb gradually increases with time, 

satisfying the formula  0 0 1bF F t t  . The purpose is to prevent the vesicle from rupturing 

due to the sudden application of the flow field. When simulation time t=200τ, the body force 

Fb reaches the maximum value F0, and it remains constant until the end of the simulation. 

 

. Details of DPD simⅡ ulations 

In this study, our coarse-grained simulations are on the basis of the dissipative particle 

dynamics (DPD), a method that samples the NVT ensemble. Taking into account the 

limitation in the time and length scales in simulation, the DPD simulation method bridges the 

gap between atomistic and mesoscopic simulation, and thereby it has been broadly used in 

many areas.5-7 In DPD simulations, each bead represents clusters of molecules, where the 

position of the bead represents the mass center of the clusters. The time evolution of positions 

and velocities is governed by Newton’s motion equations as follow 

,i i
i i e

d d

dt dt
  

r v
v f F  (1) 
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where the ri and vi represent the position and the velocity vectors of beads i, and Fe is the 

external force. For simplicity, the masses of the particles are set as 1. The beads i and j 

experience a force with the component of conservative force FC, dissipative force FD, and 

random force FR, i.e.,  C D R
i ij ij ij

j i

  f F F F , where the pairwise interaction forces are 

truncated within a certain cutoff radius rc. We take rc as our characteristic length scale and set 

the dimensionless value as rc=1. The conservative force is a soft repulsion and is given by  

ˆ(1 ) ( 1)

0 ( 1)
ij ij ij ijC

ij
ij

a r r

r

 
  

r
F  (2) 

where ij i j r r r , ij ijr  r , and ˆ / | |ij ij ijr r r . aij is the maximum repulsion between beads i 

and j, which has a linear relationship with Flory-Huggins χ parameter as 

 
3.27
ij ii

ij

a a



  (3) 

where aii=25 is the repulsion parameter between the same beads in our simulation system (i.e., 

0ii  ). aij will be smaller than 25 for a strong attraction between two beads while it will be 

larger than 25 for a strong bead-bead repulsion interaction. The larger the value of aij, the 

greater the repulsive force between beads i and j and vice versus. Here, each parameter is 

selected carefully based on the properties and interactions of different beads. We set aHT= aTW 

=100, aHW =20, aLR=15, where the subscript H and T respectively represent the head and tail 

part of the amphiphilic molecules, L and R are the binding sites of the ligand and receptor 

chains, and W represents solvent. 

The dissipative force and the random force act together as a thermostat and are given by 

ˆ ˆ( )( )D D
ij ij ij ij ijr  F r v r  (4) 

1/2 ˆ( )R R
ij ij ij ijr t   F r  (5) 
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where ij i j v v v ; ωD and ωR are weight functions and conform to the formula 

2 2( ) [ ( )] (1 )D R
ij ij ijr r r     for rij<1; ζij is a random number with zero mean and unit 

variance; ∆t is the time step in simulation; γ is a simulation parameter related to viscosity and 

the noise amplitude satisfies 2 2 Bk T  . kB and T respectively represent Boltzmann 

constant and the temperature. 1Bk T   is set in the study. The characteristic time scale is 

defined as 2 /c Bmr k T  . The remaining simulation parameters are 4.5   and 3  . 

All simulations are based on a modified version of the velocity-Verlet algorithm as follows  

21
( ) ( ) ( ) ( ) ( )

2i i i it t t t t t t      r r v f  

(6) 

( ) ( ) ( )i i it t t t t    v v f  

( ) ( ( ), ( ))i it t t t t t      f f r v  

1
( ) ( ) ( ( ) ( ))

2i i i it t t t t t t       v v f f  

To assure the accurate temperature control of the simulation system, we set 0.01t    as 

the time step and select the bead number density of 33 cr
 . 

 

Ⅲ. Details of the analytical model of Blob theory 

We develop the blob theory8,9 for the dependence of the binding stability on the chain 

stiffness. 

For wormlike chain model, the tangent vector correlation function can be expressed as  

  ' /( ) ps s lt s t s e   
 

 (1)

which leads to the mean-squared end to end distance 

  | '|/2

0 0 0 0
' ( ) ' ' p

L L L L s s lR ds ds t s t s ds ds e        
 

 (2)

This is the famous Debye integral. Through integrating, we can get 
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 /2 2 1 1 pL lp
p

l
R l L e

L
 

    
 

 (3)

where L represents the chain contour length. In our system, the contour length of the ligand 

and receptor chains are set as 1 4.7 cL r  and 2 4.1 cL r  respectively. In the flexible chain 

limit of 0pl  , it has 2 2 pR l L  , which gives the Gaussian chain limit. In the rigid 

chain limit of pl  , it has 2 2R L  , which is the rod-like limit. It is consistent with the 

actual situation, which proves the correctness of the equation. Following the 

Ornstein-Zernike approximation, we approximate Equation (3) as 

 
2

2

1 / / 2p

L
R

L l
 


 (4)

In our study, we define the average chain length of the ligand and receptor chains as H. 

It is clearly that H is a function of the chain stiffness characterized by the persistence length lp, 

while H monotonically increases as the persistence length lp increases.  

We define the area density of grafted chains as σ, satisfying 2d  , where d is the 

average distance among grafted chains. In blob theory, we hypothesis a grafted chain consist 

of N/g blobs of size d, where N represents the number of statistical segment of a single chain 

and g is the number of segment contained in a blob. So the average length of the ligand or 

receptor chains can be expressed as 
N

H d
g

 . In order to explain the effects of the chain 

stiffness, we need to further analyze this expression.  

According to the above analysis of the wormlike chain model, combined with Equation 

(4), we have 

 
2

2 ( )

1 / / 2p

ga
d

ga l



 (5)
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where a is the statistical segment length. Solving the above equation, we get the relation 

between g and d  

22

2

16
1 1

4
p

p

ld
g

l a d

 
   
  

 (6)

Let’s check the limit. For the flexible chain limit of 0pl  , we have 

2 2

2
1 1

4 p p

d d
g

al l a
      (7)

While, for the rigid chain limit of pl  , we have 

2 4
1

4
p

p

l d

l

d
g

a d a

 
   

 
 (8)

The expression d ga  is exactly the rod statistics. With the Equation (6), we can derive the 

average length of the ligand or receptor chains as  

1/2

2

4

1 1 16

p

p

LlN
H d

g l




 

 
 (9)

The two limits are easy to be checked. For the flexible chain limit of 0pl  , it has 

1/22 pH Ll  . For the rigid chain limit of pl  , it has H L ,which is independent of the 

area density of grafted chains. In our system, we set 20.318 cr  , and the dependence of 

average chain length on chain stiffness is shown in Fig. 6a in the main paper.  

The average length of the ligand and the receptor chains can be expressed as H1 and H2, 

respectively. As shown in Fig. S5, H is a function of the chain stiffness characterized by the 

persistence length lp, which monotonically increases with the increase of lp. Throughout the 

transport process, as the ligand-functionalized vesicle approaches the receptor area in the 

channel, the ligand and the receptor chains have a certain probability of recognition and 

binding, depending on the relative positions of the end groups (binding sites) of ligands and 
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receptors. We define the sum of the average length of the ligand (H1) and receptor (H2) chains 

as Lt, i.e., 1 2tL H H  , which can be expressed as an equation related to the persistence 

length of ligand (lp1) and receptor (lp2) chains as follows 

1 2

1 2

1/2 1/2
1 2

2 2

4 4

1 1 16 1 1 16

p p
t

p p

L l L l
L

l l

 

 
 

   
 (10)

Therefore, we can obtain the relation between lp1 and lp2 with different values of Lt       

based on Equation (10). As shown in the inset of Fig. 1c, the maximum binding probability 

can be realized when the three binding site beads of a ligand totally bind with those of a 

receptor.  
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. Supplementary figuresⅣ  

 

 

Figure S1. Schematic illustration of the coarse-grained models for (a) amphiphilic molecules, 

(b) rigid sphere, (c) ligand chain, (d) receptor chain, and (e) ligand-modified vesicle. (f) 

Schematic representation of a ligand-functionalized vesicle transporting through a cylindrical 

channel, where the yellow arrows indicate the direction of the flow in the channel. Solvent 

beads are not shown for clarity. 
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Figure S2. Representative snapshots demonstrate the detailed dynamic process of 

flow-induced transport of ligand-functionalized vesicle at K1=K2=10kBT. The snapshots are 

taken for times (a) 900τ, (b) 950τ, (c) 1000τ; (d) 1050τ, (e) 1150τ, and (f) 1300τ, and the Re 

is fixed at 1.8 for this system. 
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Figure S3. Representative snapshots demonstrate the detailed dynamic process of 

flow-induced transport of ligand-functionalized vesicle at K1=K2=70kBT. The snapshots are 

taken for times (a) 700τ, (b) 800τ, (c) 900τ; (d) 1000τ, (e) 1050τ, and (f) 1100τ, and the Re is 

fixed at 1.8 for this system. 
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Figure S4. Representative snapshots demonstrate the detailed dynamic process of 

flow-induced transport of ligand-functionalized vesicle at K1=K2=120kBT. The snapshots 

are taken for times (a) 900τ, (b) 950τ, (c) 1000τ; (d) 1050τ, (e) 1150τ, and (f) 1300τ, and the 

Re is fixed at 1.8 for this system. 
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Figure S5. Dependence of average chain length on chain stiffness. With increasing the 

persistence length, the average chain length increases monotonically and finally approaches 

the contour length of the chain. The area density of grafted chains is set to be σ=0.318 

chains/rc
2 and the contour length of the ligand and receptor chains are 4.7rc and 4.1rc, 

respectively. 
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Figure S6. Representative motion trajectories of flow-induced transport of the 

ligand-functionalized hard vesicles for 6 groups of ligand and receptor stiffness: K1=70 kBT at 

K2=30 kBT and K2=110 kBT; K1=80 kBT at K2=30 kBT and K2=110 kBT; K1=110 kBT at K2=30 kBT 

and K2=110 kBT. The Re is set as 1.8. 
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Figure S7. Transport behavior of pure vesicles with different rigidities in the flow channel. (a) 

Snapshots showing the transport process of soft (top), semi-rigid (middle), and hard (bottom) 

pure vesicles. (b) Representative motion trajectories of pure vesicles with different rigidities 

in the flow channel, where Re=1.8. 
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. Supplementary VideosⅤ  

Supplementary Video S1. The detailed dynamic process of the direct pass regime under the 

condition of flexible ligand and receptor chains (K1=10kBT and K2=10kBT). 

 

Supplementary Video S2. The detailed dynamic process of the capture regime under the 

condition of semiflexible ligand and receptor chains (K1=70kBT and K2=70kBT). 

 

Supplementary Video S3. The detailed dynamic process of the direct pass regime under the 

condition of stiff ligand and receptor chains (K1=120kBT and K2=120kBT). 

 

Supplementary Video S4. The detailed dynamic process of the rearrangement of 

ligand-receptor binding (K1=100kBT and K2=100kBT).  
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