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1. The dielectric tensor of hexagonal boron nitride

The hexagonal boron nitride1 nanometer-sized crystal used in this work are uniaxial van der Waals crystals with the 

crystalline axes a, b and c shown in Figure S1. In the a-b plane, the crystal presents atomically thick planes of hexagons of 

boron and nitrogen covalently bonded. Along the c axis, which is the optical axis, those planes are juxtaposed and held 

together by van der Waals forces. Due to this crystalline structure, its dielectric tensor (Equation S1) is isotropic in the a-�⃡�

b plane and anisotropic along the c axis. Hence, hBN crystal is, commonly, classified isotropic in-plane and anisotropic 

out-of-plane. Therefore, thein-plane components of  can be labeled as  and, the out-of-plane ones, as �⃡� 𝜀𝑎𝑎 = 𝜀𝑏𝑏 = 𝜀 ⊥

. As conventionally adopted the symbols  and  indicate perpendicular and parallel directional with respect to 𝜀𝑐𝑐 = 𝜀 ∥ ⊥ ∥

the optical axis c.

�⃡� = [𝜀𝑎𝑎 0 0
0 𝜀𝑏𝑏 0
0 0 𝜀𝑐𝑐

] (S1)

In the range from  = 746 cm-1 to  = 819 cm-1, hBN presents the type I hyperbolic band containing the 𝜔𝑇𝑂, ∥ 𝜔𝐿𝑂, ∥

out-of-plane polarized phonons. In the range  = 1365 cm-1 to  = 1610 cm-1, type II hyperbolic band appears 𝜔𝑇𝑂, ⊥ 𝜔𝐿𝑂, ⊥

associated with the in-plane polarized phonons. In general,  and  are given by the Lorentzian functions1,2 in the 𝜀 ∥ 𝜀 ⊥

Equation S2. 

𝜀𝛼(𝜔) =  𝜀∞,𝛼(1 +
𝜔 2

𝐿𝑂,𝛼 ‒ 𝜔 2
𝑇𝑂,𝛼

𝜔 2
𝑇𝑂,𝛼 ‒ 𝜔2 ‒ 𝑖𝜔Γ𝛼

),                𝛼 =  ⊥ , ∥ (S2)

In Equation S2, = 4.9 and = 2.95 are the asymptotic intrinsic dielectric amplitudes for high frequencies, 𝜀∞ ⊥ 𝜀∞ ∥

 5 cm-1 and  4 cm-1are the dielectric damping for each component.Γ ⊥ = Γ ∥ =



Figure S1- Hexagonal boron nitride lattice. The covalently N-B hexagons lie on a-b planes that are juxtaposed 

along the c axis.

2. Dielectric function of gold (Au)

We use the dielectric function of Au given from ref. 3 that assumes the Drude-Sommerfeld free electron mode 

given by Equation S3, where: = 8.45 eV/ℏ is the plasmonic frequency and  is the electron relaxation rate, 𝜔𝑝
Γ𝐴𝑢 =  1 𝜏𝐷

with   = 14 ps.𝜏𝐷

𝜀𝐴𝑢(𝜔) =  1 ‒
𝜔2

𝑝

𝜔2 + 𝑖𝜔Γ𝐴𝑢
(S3)

3. The electric field of an irradiating dipole

As described in the main text, the crystal edge and the tip, the polariton launchers5,6 in the hBN/Au system, are 

replaced by a dipole distribution and by a single dipole, respectively. The superposition of the electric fields irradiated 

from those dipoles and a non-local (non-propagating) field produce the observed polaritonic field.

Figure S2- Hertzian Dipole scheme on hBN crystal

The analytic expression of the irradiated electric fields of a single dipole can be derived from the Maxwell 

equations considering q vector potential4 (Equation S4). The vector potential can be understood as a consequence of the 

induced dipolar momentum  to the hBN crystal because of the resonant IR illumination. �⃗�

�⃗�(𝑟) =  ‒ 𝑖𝐴
𝑒 ‒ 𝑖𝑘𝑟

4𝜋𝑟
�⃗� (S4)

Accordingly, the magnetic field [ ] created by  is given by �⃗�(𝑟) �⃗�



�⃗�(𝑟) =  
1
𝜇

∇⃗ × �⃗� (S5)

Where  is the magnetic permeability of the medium, in the case . The electric field  outside the source is 𝜇 𝜇 = 1 �⃗�(𝑟)

�⃗�(𝑟) =  𝑖 
𝑍
𝑘

∇⃗ × �⃗� (S6)

Where  is the impedance of the medium. Therefore, solving the equations S5 and S6, the general expression for a 𝑍

HDA electric field4  is shown by the Equation S7.�⃗�

�⃗� =  𝑖
𝑘𝐴𝑒 ‒ 𝑖𝑘𝑟

4𝜋𝑟 [( 1
𝑖𝑘𝑟

+
1

(𝑖𝑘𝑟)²)2cos 𝜃�̂� + (1 +
1

𝑖𝑘𝑟
+

1
(𝑖𝑘𝑟)²)sin 𝜃�̂�] (S7)

�⃗�𝑧 =  ‒ 𝑖𝐴
𝑘𝑒 ‒ 𝑖𝑘𝑟

4𝜋𝑟
sin2 𝜃�̂� (S8)

 In Equation S7, k is the polariton momentum, A is the dipole amplitude and r, the distance from the center of the 

dipole to a given point. As discussed in the main text, we consider only the z-component  in the radiation field regime �⃗�

(Figure S2). The general expression of the  is shown in Equation S8. �⃗�𝑧

4. The Hertzian dipole model

As discussed in the main manuscript, the tip-launched waves travel to the edge, there, they are reflected back to the 

tip. In parallel, edge-launched waves travel straight to the tip. Considering a dipole at the tip location and a discrete dipole 

distribution along the edge, the resulting HP2 electric field , probed at the tip position, is given by the Equation S9. The �⃗�𝑧

first and the second terms of this equation correspond to the electric fields irradiated from the tip dipole (labeled with 

subscripts t) and the dipole distribution at the edge (e) with amplitudes  and , respectively. The third is the non-𝐴𝑡 𝐵𝑗

propagating field. Regarding the reference frame of the Figure S2 and considering the unit vector :  =  �̂� |�⃗� ‒ �⃗�𝑒
𝑗|

 and = , for the edge,  and 
(𝑦 ‒ 𝑦𝑒)2 + (𝑑

2)2 + (𝑥)2
𝜃𝑒

𝑗

cos ‒ 1 (�̂� ∙ (�⃗� ‒ �⃗�𝑒
𝑗)

|�⃗� ‒ �⃗�𝑒
𝑗| ) |�⃗�𝑡| = (𝑦 ‒ 𝑦𝑒)2 + (𝑑

2)2 + (2𝑥)2

, for the tip. For the sake of completeness, the electric field of the tip dipole has an arbitrary phase 
𝜃𝑡 = cos ‒ 1 (�̂� ∙ �⃗�𝑡

|�⃗�𝑡| )
difference ; this extra phase can be understood as different reaction times of the two dipole types to the far-field 𝜑

excitation.  .



𝐸𝑧(𝑟) =‒ 𝑖𝑘𝐴
𝑒

‒ 𝑖𝑘(|�⃗�𝑡| + 𝜙)

4𝜋|�⃗�𝑡|
sin2 𝜃𝑡 ‒

𝑁

∑
𝑗 = 1

𝑖𝑘𝐵𝑗
𝑒

‒ 𝑖𝑘|�⃗� ‒ �⃗�𝑒
𝑗|

4𝜋|�⃗� ‒ �⃗�𝑒
𝑗|

sin2 𝜃𝑒
𝑗 + 𝐶𝑒 ‒ 𝑖𝛼

(S9)

5. HDA analysis of HP²s in hBN/SiO2

The HDA consistency is also demonstrated by the analyses of HP² modes in a 95 nm thick hBN crystal lying on 

SiO2 (Figure S3). It is worthy commenting that the hBN/SiO2 system has been largely investigated in the literature2,7,8.The 

spectral linescan amplitude and phase in Figure S3a and S3b, respectively, reveal the characteristic polariton branches in 

the type II band. For this sample, polariton waves of type I are, vanishingly, small. Using the same procedure reported in 

main text, we fit to Equation S6 the wave profiles taken from the linescan amplitude as shown in Figure S4a for  = 1457 𝜔

cm-1.The parameters of this fit allows for generating the corresponding phase for  = 1457 cm-1plotted in Figure S4b with 𝜔

the respective data. Importantly, fitting and generated phase, closely, agree with experiments. Figure S5a shows the fit-

extracted and calculated momenta-frequency dispersion relations for hBN/SiO2. These theoretical curves originate from 

Equations 2 and 3 of the main manuscript where  is the SiO2 permittivity9. Furthermore, we show in Figure S5b the 𝜀𝑠

experimental (blue squares) and theoretical (red line) group velocity ( ) of the type II HP2pulse. As described in the main 𝑣𝑔

manuscript,  and the fit-extracted imaginary momenta determine a lifetime ( ) around 0.6 ps, calculated at the central 𝑣𝑔 𝜏

frequency ~ 1450 cm-1, for type II HP2s on SiO2.The HDA analysis, thereby, explains well the experimental data allowing 

for the attainment of reliable optical properties of the polaritonic waves.

Figure S3- Amplitude a) and relative phase b) obtained from spectral linescan measured in hBN of 95 nm thickness 

on SiO2 substrate. The total length of spectral linescan is 3.5 μm: 3.3 μm on the crystal and 0.2 μm on SiO2.



Figure S4 - Fitting using HDA model in HP² waves in hBN measured over SiO2 substrate. In a) we show the normalized 

amplitude of the HP² electric field for Type II band with frequency ω = 1457 cm-1, b) relative phase simulated using fit parameters.

Fig. S5-a) dispersion for type 2 band of hBN over SiO2 substrate, the red continuous line is the dispersion calculated by S.Dai 

and the blue dots are the momenta extracted by HDA model; b) is the group velocity of the HP² waves, where the red line is the 

theoretical group velocity and blue square is the fitting group velocity 

6. HDA analysis of a 45 nm - thick hBN on Au 

Figure S6a and S6b show, respectively, the amplitude and phase of the spectral linescan, across the edge of a 45 nm 

thick hBN crystal lying on Au substrate, covering the type I band. We note the contrasting polariton branches in both 

measurements. As performed in the main manuscript, we present in Figure S7a the HDA fits to the polariton profiles, for 

different ’s, extracted from Figure S6a. The corresponding fit-generated phases are displayed in Figure S7b. 𝜔

Accordingly, theoretical and experimental (Figure S8a) and  (Figure S8b) are determined. From those analysis, 𝜔 ‒ 𝑞𝑝 𝑣𝑔

we find , for 800 cm-1, and , for 790 cm-1.𝜏𝑝 = 1.7 𝑝𝑠 𝜏𝑝 = 1.4 𝑝𝑠



Fig S6-a) amplitude and b) phase of a spectral linescan measured on a 45 nm thick hBN on Au substrate.

Figure S7- HDA model applied to HP² waves in the 45 nm-thick hBN on Au. a) Fits (red curves) to the experimental polaritons 

amplitudes (green circles). b) experimental (yellow circles) and fit-generated relative phase (blue curves).



Figure S8- for the type I band of a 45 nm-thich hBN/Au, (a) theoretical (red curve) and experimental (blue circle)  and 𝜔 ‒ 𝑞𝑝

(b) theoretical (red curve) and experimental (crossed squares) .𝑣𝑔

7. Comparison between the HDA and previously reported models of polariton waves

We show in Figure S9a-c the fits to type I polariton waves at , extracted from Figure 1c of the main 𝜔 = 790 𝑐𝑚 ‒ 1

text, from our proposed HDA model and from the already reported models in references 10 and 7, respectively. The 

corresponding fit-generated phases are displayed in Figure S9d-f. We note that only the HDA model enables 

reconstruction of phase, from the amplitude fit parameters, in reliable agreement with experiment. This model, therefore, 

exhibits completeness for explaining the complex-valued measurements obtained by SINS and, accordingly, by s-SNOM, 

as argued in the main text. The analogous examinations, for the type II polaritons, leading to an equivalent conclusion, are 

presented in Figure S10. 



  

Figure S9 – a-c. Fits (red curves) to the amplitude of the type I mode at 795 cm-1, extracted from the measurement shown in 

Figure 1c of the main text (circles), using the proposed HDA model of this word and models from references 10 and 7, respectively. d-

f. Corresponding fit-generated phase using the parameters obtained from the fits in a-c. 



Figure S10 - a-c. Fits (red curves) to the amplitude of the type II mode at 1440 cm-1, extracted from the measurement shown in 

Figure 1e of the main text (circles), using the proposed HDA model of this word and models from references 10 and 7, respectively. d-

f. Corresponding fit-generated phase using the parameters obtained from the fits in a-c.

8. Calculation of the non-local field

To theoretically determine the SINS point-spectrum, we use the standard description of s-SNOM. The tip is 

polarized by the incident field, which in turn, interacts with the sample via the multiple reflections of the evanescent fields 

between the tip and the sample. This interaction is embedded in the scattered far field and is proportional to the effective 

polarizability of the tip ( ). There are different approaches to calculate the effective tip-sample coupling, however, more 𝜒

sophisticated models are required when the reflectivity function β=rp(ω,q) depends strongly on the in-plane momentum q. 

Based on the above, we specifically follow the generalized spectral method (GSM) proposed  in Ref.11 , they showed that 



the effective polarizability is a functional of the reflectivity and the tip-sample distance (ztip) and can be decomposed into 

eigenfunctions of an auxiliary problem. For each distance ztip the polarizability can be represented by a series expansion:

𝜒(𝛽) =
𝑁

∑
𝑘 = 0

𝑅𝑘

𝛽𝑘 ‒ 𝛽 (S10)

Further details of the eigenproblem or the method to calculate the poles  and the residues can be find in Ref.11. 𝛽𝑘 𝑅𝑘

It is important to mention that we used a perfect conducting spheroidal probe with curvature radius a = 30 nm and 

different major semi-axis lengths (L).

Finally, the demodulated signal is calculated by:

𝐶(𝜔)𝑒 ‒ 𝑖𝛼(𝜔) =  [1 + 𝑟𝑝]2( 2𝜋

∫
0

𝜒(𝜔,𝑧𝑡𝑖𝑝)𝑒𝑖𝑛𝜑𝑑𝜑
2𝜋) (S11)

Moreover, the hyperspectral images were simulated replacing the non-local field, , by the SINS spectra 𝐶(𝜔)𝑒 ‒ 𝑖𝛼(𝜔)

simulation and setting the amplitude of the dipoles as  and . Thus, the total electric field of the HP² waves is 𝐴𝑡 = 1 𝐴𝑒 = 1
3

given Equation S9, same as Equation 1 of the main manuscript. For the phase , we use values given from fits.𝜑
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