Binder-free V2O5/CNT Paper Electrode for High Rate Performance Zinc Ion Battery

Bo-Si Yin,^{a,b} Si-Wen Zhang,^{a,b} Ke Ke,^a Ting Xiong,^b Yinming Wang,^b Boon Kiang David Lim,^b Wee Siang Vincent Lee,^{b*} Zhenbo Wang^{a*} and Junmin Xue^{b*}

^a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin 150001, China

^b Department of Materials Science and Engineering, National University of Singapore, 117576 Singapore, Singapore

Figure S1. (a) Cyclic voltammetry curves of pure CNT film and V₂O₅/CNT paper at a scan rate of 0.2 mV s⁻¹; (b) Cyclic voltammetry curves of V₂O₅/CNT paper at various scan rates.

Figure S2. (a) The areal/volumetric capacities of V_2O_5 /CNT paper; (b) The areal/volumetric energy/power densities of V_2O_5 /CNT paper.

Device	Electrolyte	Energy density (Wh kg ⁻¹)	Power density (W kg ⁻¹)	Ref.
Zn//V ₂ O ₅	Aqueous	218.8	154.9	22
Zn//V ₂ O ₅ @V-MOF	Aqueous	230	76.6	23
$Zn//V_2O_5 \cdot H_2O$	Aqueous	90	6.4k	24
$Zn//Zn_3V_2O_7(OH)_2 \cdot 2H_2O_7$	Aqueous	214	50.2	25
Zn//V2O5@PEDOT	Aqueous	243.3	90	26
Zn//Na ₂ V ₆ O ₁₆ ·3H ₂ O	Aqueous	90	15.8k	27
Zn//Na ₃ V ₂ (PO ₄) ₂ F ₃	Aqueous	97.5	314.5	28
$Zn//(NH_4)_2V_{10}O_{25}$ ·8H ₂ O	Aqueous	225.4	98.9	29
Zn//CNTs/V ₂ O ₅	Aqueous	278	891	This
				work

 Table S1. The comparison Table of recent reports.

Figure S3. The discharge curves at current density of 1.0 A g^{-1} : (a) V_2O_5 powder, (b) CNT/V₂O₅ mixed powder and (c) V_2O_5 /CNT paper.

Figure S4. The XRD patterns of V_2O_5 /CNT paper before and after cycle; (b) The SEM image of V_2O_5 /CNT paper before and after cycle.

Figure S5. (a to f) The SEM images of V_2O_5/CNT paper under different potential.

Figure S6. The mechanical stability of V_2O_5/CNT paper electrode.