Supplementary Information

Perovskite hetero-anionic-sublattice interfaces for optoelectronics

and nonconventional electronics

Dali Cheng^a, Deying Kong^b, Xing Sheng^{a,c}, Lan Yin^b, Huanglong Li^{d*}

^aDepartment of Electronic Engineering, Tsinghua University, Beijing 100084, China
^bSchool of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
^cBeijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
^dDepartment of Precision Instrument, Tsinghua University, Beijing 100084, China
Email: <u>li huanglong@mail.tsinghua.edu.cn</u>

Figure S1. a) Typical atomic structure of PO. PDOSs of b) CaTiO₃, c) SrTiO₃, d) BaTiO₃, e) CaZrO₃, f) SrZrO₃, g) BaZrO₃ and h) LaAlO₃.

Figure S2. PDOSs of the SrTiO₃ unit cell under different biaxial strains.

Figure S3. Atomic structures of a) type-a and b) type-b Cs₂TiBr₆: ABO₃ interfaces.

Figure S4. Ranges of atomic chemical potentials for a) Cs_2TiBr_6 , b) $CsPbBr_3$, c) $CaTiO_3$, d) $SrTiO_3$, e) $BaTiO_3$, f) $CaZrO_3$, g) $SrZrO_3$ and h) $BaZrO_3$. and h) $LaAlO_3$. For Cs_2TiBr_6 : $ATiO_3$ interface systems (A: Ca, Sr, Ba), the atomic chemical potentials are shown on their corresponding three-dimensional " μ_0 - μ_{Br} - μ_{Cs} " color contour plots. Here, figure (i–k) and (l–n) illustrate the upper bound and lower bound values for μ_{Cs} , respectively.

(a)

(b)

(c)

Figure S5. Atomic structures and PDOSs a) TiO₂, b) V₂O₅, c) WO₃, d) MoO₃ and e) SrCu₂O₂.

(a)

Figure S6. Atomic structures and PDOSs of a) Cs_2TiBr_6 : TiO_2 , b) Cs_2TiBr_6 : V_2O_5 , c) Cs_2TiBr_6 : WO_3 , d) Cs_2TiBr_6 : MoO_3 , and e) Cs_2TiBr_6 : $SrCu_2O_2$ interfaces.

Figure S7. Layer-by-layer PDOSs in Cs_2TiBr_6 : LaAlO₃ asymmetrical interface models, with different Cs_2TiBr_6 and LaAlO₃ thicknesses. a) 4-layer Cs_2TiBr_6 and 6-layer LaAlO₃, b) 6-layer Cs_2TiBr_6 and 6-layer LaAlO₃, c) 8-layer Cs_2TiBr_6 and 6-layer LaAlO₃, d) 6-layer Cs_2TiBr_6 and 4-layer LaAlO₃, and e) 6-layer Cs_2TiBr_6 and 8-layer LaAlO₃.

Figure S8. Layer-by-layer PDOSs in CsPbBr₃: LaAlO₃ asymmetrical interface models, with different CsPbBr₃ and LaAlO₃ thicknesses. a) 4-layer CsPbBr₃ and 6-layer LaAlO₃, b) 6-layer CsPbBr₃ and 6-layer LaAlO₃, c) 6-layer CsPbBr₃ and 4-layer LaAlO₃, and d) 6-layer CsPbBr₃ and 8-layer LaAlO₃.

Table S1. A summary of the lattice constants of perovskite halides and perovskite oxides (unit: Å).

Lattice Material	а	$\sqrt{2}$ a	$2\sqrt{2} a$
Cs ₂ TiBr ₆	11.073	-	-
CsPbBr ₃	6.011	-	-
CaTiO ₃	3.885	5.494	10.988
SrTiO ₃	3.939	5.571	11.141
BaTiO ₃	4.026	5.694	11.387
CaZrO ₃	4.135	5.848	11.696
SrZrO ₃	4.171	5.899	11.797
BaZrO ₃	4.230	5.982	11.964
LaAlO ₃	3.838	5.428	10.856

Table S2. Interface formation energies for CsPbBr₃: ABO₃ systems (unit: $eV/Å^2$). Negative value indicates that the formation of the interface is exothermic.

Stratom	Interface	Chemical Potential					
System	Туре	O-rich, Br-rich	O-rich, Br-poor	O-poor, Br-rich	O-poor, Br-poor		
CsPbBr ₃ :	Type a	0.1023	0.1943	-0.0548	0.0371		
CaTiO ₃	Type b	-0.0335 -0.0335	-0.0335	-0.0335			
CsPbBr ₃ :	Type a	0.1356	0.2276	-0.0243	0.0677		
SrTiO ₃	Type b	0.0721	0.0721	0.0721	0.0721		
CsPbBr ₃ : T BaTiO ₃ T	Type a	0.1172	0.2092	-0.0475	0.0444		
	Type b	-0.0094	-0.0094	-0.0046	-0.0046		
CsPbBr ₃ :	Type a	-0.0180	0.0740	-0.1788	-0.0868		
CaZrO ₃	Type b	-0.1056	-0.1056	-0.1056	-0.1056		
CsPbBr ₃ :	Type a	0.0591	0.1510	-0.1088	-0.0168		
SrZrO ₃	Type b	-0.0315	-0.0315	-0.0315	-0.0315		
CsPbBr ₃ :	Type a	0.1119	0.2039	-0.0722	0.0198		
BaZrO ₃	Type b	-0.0356	-0.0356	-0.0211	-0.0211		

Table S3. Interface formation energies for Cs_2TiBr_6 : ATiO₃ systems (unit: $eV/Å^2$). Negative value indicates that the formation of the interface is exothermic.

	Interface	Chemical Potential				
System	Туре	oe O-rich O-poor		Br-rich	Br-poor	
Cs ₂ TiBr ₆ :	Type a	0.0093	0.0136	0.0099	0.0128	
CaTiO ₃	Type b	rpe b -0.0063 -0.0126	-0.0109	-0.0111		
Cs ₂ TiBr ₆ :	Type a	0.0226	0.0360	0.0279	0.0291	
SrTiO ₃	Type b	0.0038	-0.0147	-0.0073	-0.0049	
Cs ₂ TiBr ₆ :	Type a	0.0277	0.0412	0.0338	0.0332	
BaTiO ₃	Type b	-0.0015	-0.0200	-0.0131	-0.0087	

Table S4. Interface formation energies for Cs_2TiBr_6 : AZrO₃ systems (unit: $eV/Å^2$). Negative value indicates that the formation of the interface is exothermic.

	Interface	Chemical Potential				
System	Туре	Type O-rich, Br-rich O-rich, Br-poor		O-poor, Br-rich	O-poor, Br-poor	
Cs ₂ TiBr ₆ :	Type a	-0.0031	0.0274	-0.0505	-0.0199	
CaZrO ₃	Type b	/pe b -0.0498 -0.0498	-0.0498	-0.0498		
Cs ₂ TiBr ₆ :	Type a	0.0477	0.0782	-0.0018	0.0288	
SrZrO ₃	Type b	0.0013	0.0013	0.0013	0.0013	
Cs ₂ TiBr ₆ : BaZrO ₃	Type a	0.0853	0.1158	0.0268	0.0573	
	Type b	0.0328	0.0328	0.0413	0.0413	

Sustem Interface	Interface	Component	Chemical Potential				
System	Туре	surface	O-rich, Br-rich	O-rich, Br-poor	O-poor, Br-rich	O-poor, Br-poor	
Type a	Т	Halide	-0.0011	0.0908	-0.0011	0.0908	
	Type a	Oxide	0.2332	0.2332	0.0760	0.0760	
CaTiO ₃	Tunah	Halide	-0.0188	-0.0188	-0.0188	-0.0188	
	Type 0	Oxide	0.0140	0.0140	0.0140	0.0140	
	Tumo o	Halide	-0.0018	0.0902	-0.0018	0.0902	
CsPbBr ₃ :	Type a	Oxide	0.2763	0.2763	0.1164	0.1164	
SrTiO ₃	Tymah	Halide	-0.0207	-0.0207	-0.0207	-0.0207	
	Type b	Oxide	0.0673	0.0673	0.0673	0.0673	
	Treeses	Halide	-0.0002	0.0917	-0.0002	0.0917	
CsPbBr ₃ :	Type a	Oxide	0.2488	0.2488	0.0840	0.0840	
BaTiO ₃	Type b	Halide	-0.0190	-0.0190	-0.0190	-0.0190	
		Oxide	0.0340	0.0340	0.0388	0.0388	
	Type o	Halide	-0.0010	0.0910	-0.0010	0.0910	
CsPbBr ₃ :	Type a	Oxide	0.1625	0.1625	0.0018	0.0018	
CaZrO ₃ Type b	Tymah	Halide	-0.0199	-0.0199	-0.0199	-0.0199	
	Oxide	-0.0550	-0.0550	-0.0550	-0.0550		
	Tuna a	Halide	-0.0022	0.0898	-0.0022	0.0898	
CsPbBr ₃ :	Type a	Oxide	0.2408	0.2408	0.0730	0.0730	
SrZrO ₃	Tymah	Halide	-0.0198	-0.0198	-0.0198	-0.0198	
	Type 0	Oxide	0.0059	0.0059	0.0059	0.0059	
	Tuna a	Halide	0.0000	0.0920	0.0000	0.0920	
CsPbBr ₃ :	Type a	Oxide	0.2814	0.2814	0.0973	0.0973	
BaZrO ₃	Tuna h	Halide	-0.0161	-0.0161	-0.0161	-0.0161	
	Type b	Oxide	0.0067	0.0067	0.0211	0.0211	

Table S5. Surface energies for the component surfaces in CsPbBr₃: ABO₃ systems (unit: $eV/Å^2$). Negative value indicates that the formation of the surface is exothermic.

Table S6. Surface energies for the component surfaces in Cs_2TiBr_6 : ATiO₃ systems (unit: $eV/Å^2$). Negative value indicates that the formation of the surface is exothermic.

System Interface Type	Interface	Component	Chemical Potential				
	surface	O-rich	O-poor	Br-rich	Br-poor		
	Treeses	Halide	0.0020	0.0322	0.0010	0.0325	
Cs ₂ TiBr ₆ :	Type a	Oxide	0.0430	0.0170	0.0446	0.0160	
CaTiO ₃ Type	Truch	Halide	0.0040	0.0039	0.0030	0.0040	
	Type 0	Oxide	0.0153	0.0093	0.0118	0.0106	
Cs ₂ TiBr ₆ : SrTiO ₃ Type	Tuna a	Halide	0.0029	0.0330	0.0018	0.0334	
	Type a	Oxide	0.0522	0.0354	0.0586	0.0282	
	T 1-	Halide	0.0041	0.0039	0.0030	0.0041	
	Type 0	Oxide	0.0255	0.0072	0.0155	0.0168	
	Tuna a	Halide	0.0033	0.0335	0.0023	0.0338	
Cs ₂ TiBr ₆ :	i ype a	Oxide	0.0586	0.0419	0.0657	0.0336	
BaTiO ₃	Tymak	Halide	0.0043	0.0041	0.0033	0.0043	
	Type b	Type b	Oxide	0.0236	0.0052	0.0129	0.0164

Table S7. Surface energies of the component surfaces in Cs_2TiBr_6 : AZrO₃ systems (unit: $eV/Å^2$). Negative value indicates that the formation of the surface is exothermic.

Systems Interface Type	Interface	Component	Chemical Potential			
	Туре	surface	O-rich, Br-rich	O-rich, Br-poor	O-poor, Br-rich	O-poor, Br-poor
	Tyma a	Halide	0.0036	0.0341	0.0036	0.0341
Cs ₂ TiBr ₆ :	Type a	Oxide	0.0472	0.0472	-0.0001	-0.0001
CaZrO ₃	Truch	Halide	0.0045	0.0045	0.0045	0.0045
Туре	Type 0	Oxide	-0.0397	-0.0397	-0.0397	-0.0397
Cs ₂ TiBr ₆ : SrZrO ₃ Type b	Tuna a	Halide	0.0053	0.0358	0.0053	0.0358
	Type a	Oxide	0.0962	0.0962	0.0467	0.0467
	Tuna h	Halide	0.0057	0.0057	0.0057	0.0057
	Oxide	0.0255	0.0255	0.0255	0.0255	
	Tuna a	Halide	0.0059	0.0365	0.0059	0.0365
Cs ₂ TiBr ₆ : BaZrO ₃	I ype a	Oxide	0.1359	0.1359	0.0774	0.0774
	Tymak	Halide	0.0065	0.0065	0.0065	0.0065
	I ype b	Type b	Oxide	0.0538	0.0538	0.0623

Table S8. Energy gains in forming the interfacial chemical bonds for CsPbBr₃: ABO₃ and Cs₂TiBr₆: ABO₃ systems (unit: $eV/Å^2$). Positive value indicates that the formation of the bonds is exothermic.

System	Type-a Interface	Type-b Interface
CsPbBr ₃ : CaTiO ₃	0.1297	0.0287
CsPbBr ₃ : SrTiO ₃	0.1388	-0.0254
CsPbBr ₃ : BaTiO ₃	0.1313	0.0244
CsPbBr ₃ : CaZrO ₃	0.1796	0.0307
CsPbBr ₃ : SrZrO ₃	0.1796	0.0177
CsPbBr ₃ : BaZrO ₃	0.1695	0.0262
Cs ₂ TiBr ₆ : CaTiO ₃	0.0357	0.0257
Cs ₂ TiBr ₆ : SrTiO ₃	0.0325	0.0258
Cs ₂ TiBr ₆ : BaTiO ₃	0.0342	0.0294
Cs ₂ TiBr ₆ : CaZrO ₃	0.0539	0.0145
Cs ₂ TiBr ₆ : SrZrO ₃	0.0537	0.0299
Cs ₂ TiBr ₆ : BaZrO ₃	0.0565	0.0275