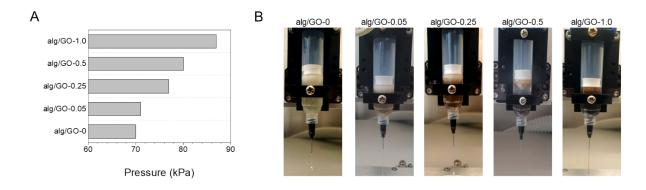
Supporting Information

Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal

stem cell printing and bone regeneration applications


Goeun Choe,^a Seulgi Oh,^a Ji Min Seok,^b Su A Park^b* and Jae Young Lee^a *

^a School of Materials Science and Engineering, Gwangju Institute of Science and Technology

(GIST), Gwangju, 61005, Republic of Korea

^b Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea

* Corresponding authors: e-mail to jaeyounglee@gist.ac.kr (J.Y.L), psa@kimm.re.kr (S.A.P)

Figure S1 (A) Applied pressures for sub-optimal printing with each bioink. (B) Photographs during the printing with each bioink.

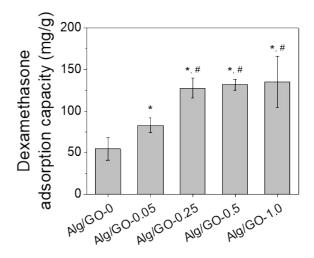



Figure S2 Compressive moduli of the scaffolds printed with various bioinks.

Figure S3 Dexamethasone adsorption to various Alg/GO scaffolds. * and # indicate statistical differences compared to alg/GO-0 and alg/GO-0.05, respectively, for 24 h. Individual scaffolds were cut into 5 mm x 5 mm pieces and weighed. Then, the samples were transferred into 0.5 mg/mL dexamethasone solution (in PBS) and at 37°C for 24 h. Then, the absorbance of the solution at 240 nm was measured to analyzed the dexamethasone concentration in the solution and calculate the absorption capacity of each sample.