## Electronic Supplementary Information (ESI)

## Nanographene oxide-TiO<sub>2</sub> photonic films as plasmon-free substrates for surface-enhanced Raman scattering

Dimitrios Papadakis, <sup>a</sup> Angeliki Diamantopoulou, <sup>a</sup> Petros-Andreas Pantazopoulos, <sup>a</sup> Dimitrios Palles, <sup>b</sup> Elias Sakellis, <sup>c</sup> Nikos Boukos, <sup>c</sup> Nikolaos Stefanou <sup>a</sup> and Vlassis Likodimos\*<sup>a</sup>

<sup>a</sup> Section of Solid State Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, 15784, Greece. E-mail: <u>vlikodimos@phys.uoa.gr</u>

<sup>b</sup> Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece

<sup>c</sup> Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece



**Fig. S1** Specular reflectance spectra for the colloidal opal templates from 330 and 406 nm PMMA spheres. The inset shows the corresponding R% spectrum for the PS 510 nm opal film, where the stop band is expected at 1200 nm.



**Fig. S2** SEM images for the PC406 inverse opals (a) before and (b) after surface functionalization with GO nanosheets.



**Fig. S3** The molar extinction coefficient of MB determined from 10<sup>-5</sup> M aqueous solution using a 1 cm path length quartz micro cell. Solid lines depict the different laser excitation wavelengths applied in the present work.



**Fig. S4** Raman spectra of  $3 \times 10^{-5}$  M MB adsorbed on pristine and nanoGO-functionalized P25 films at different laser excitations.



**Fig. S5** (a) Raman spectra of nanoGO-PC330 before and after thermal reduction at 200 °C under He flow at 514 nm. (b) MB SERS spectra on nanoGO-PC330 and nano rGO-PC330 fims after adsorption using 10<sup>-4</sup> M MB aqueous solution.



**Fig. S6** Raman spectra of RhB and Rh6G dyes adsorbed from 10<sup>-5</sup> M aqueous solutions on nanoGO-PC330 substrates compared to the corresponding solid powders at 488 and 514 nm, respectively.



**Fig. S7** MB SERS spectra on nanoGO-PC330 after adsorption in MB aqueous solutions of decreasing concentrations at 514 nm.



**Fig. S8** Concentration dependence of the 1628 cm<sup>-1</sup> SERS intensity on nanoGO-PC330 (a) over a broad MB concentration range ( $10^{-4}$  to  $6 \times 10^{-7}$  M) and (b) in the mM range along with the corresponding linear fit. The solid line in (a) serves as a guide to the eye.



**Fig. S9** SEM images of nanoGO-PC330 substrate (a) before and (b) after the 2<sup>nd</sup> regeneration cycle. (c) The corresponding Raman spectra of the SERS substrates at 514 nm.

| MB powder | PC330     | nanoGO-PC330 | Assignment [1], [2], [3]     |
|-----------|-----------|--------------|------------------------------|
| 1627 (vs) | 1629 (vs) | 1630 (vs)    | v(C-C)ring                   |
| 1543 (vw) | 1546 (vw) | 1546 (vw)    | vasym(C-C-C)                 |
| 1473 (s)  | 1482 (s)  | 1474 (s)     | ν(C-C)/δ(C-N-C)              |
| 1440 (m)  | 1430 (s)  | 1443 (s)     | v(C-C-C)/vas(C-N-C)          |
| 1397 (s)  | 1394 (s)  | 1398 (s)     | v(C-C)/v(NH-C)               |
| 1366 (m)  | 1366 (vw) | 1366 (m)     | ν(C-N-C)/δ(C-C-C)            |
| 1303 (m)  | 1302 (w)  | 1302 (m)     | δ(C-N-C)/β(C-H)              |
| 1186 (w)  | 1186 (vw) | 1186 (w)     | w(C-H)                       |
| 1157 (w)  | 1157 (vw) | 1157 (w)     | δ(C-C-C)/w(NH)/β(CH)         |
| 1076 (m)  | 1076 (w)  | 1076 (m)     | w(NH)/w(CH)                  |
| 1039 (w)  | 1037 (m)  | 1037 (m)     | ν(C-S-C)/δ(C-C-C)            |
| 953 (m)   | 953 (w)   | 953 (m)      | ν(C-S-C)                     |
| 900 (vw)  | 900 (m)   | 900 (m)      |                              |
| 862 (m)   | 862 (vw)  | 862 (w)      |                              |
| 828 (vw)  | 828 (w)   | 828 (w)      |                              |
| -         | 809 (w)   | 808 (w)      | δ(C-N-C)/ δ(C-S-C)/ δ(C-C-C) |
| 772 (m)   | 771 (w)   | 772 (m)      |                              |
| 670 (w)   | 670 (vw)  | 671 (w)      | γ(C-H)                       |
| 595 (vw)  | 597 (w)   | 597 (w)      | δ(C-S-C)/δ(C-C-C)            |
| 502 (w)   | 502 (w)   | 502 (vw)     | $\delta$ (C-N-C) dimer       |
| -         | 479 (vw)  | 479 (vw)     | β(C-H) monomer               |
| 448 (m)   | 448 (m)   | 448 (m)      | $\delta$ (C-N-C) dimer       |

**Table S1** Raman band frequencies of MB adsorbed on pristine PC330 and nanoGO-PC330 inverse opals compared to those of solid MB powder at 514 nm.

Abbreviations: s, strong; m, medium; w, weak; vw, very weak; v, stretching;  $\beta$ , in-plane bending;  $\gamma$ , out-of-plane bending;  $\delta$ , skeletal deformation; w, wagging

## References

- 1 K. Hutchinson, R. E. Hester, W. J. Albery and A. R. Hillman, *J. Chem. Soc., Faraday Trans.* 1, 1984, **80**, 2053-2071.
- 2 W. Xu, M. Aydin, S. Zakia and D. L. Akins, J. Phys. Chem. B 2004, 108, 5588-5593.
- 3 G. N. Xiao and S. Q. Man, Chem. Phys. Lett., 2007, 447, 305–309.