Electronic Supplementary Information for

Intrinsic Ferromagnetism and Valley Polarization in Hydrogenated Group V Transition-metal Dinitride (MN_2H_2 , M = V/Nb/Ta) Nanosheets: Insights from First-principles

Yi Ding¹ and Yanli Wang²

¹⁾Department of Physics, Hangzhou Normal University, Hangzhou, Zhejiang 311121, Peoples Republic of China.

²⁾Department of Physics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, Peoples Republic of China.

Contents:

Figure S1. The AIMD results of VN_2H_2 nanosheets.

Figure S2. The AIMD results of TaN_2H_2 nanosheets.

Figure S3. The exfoliation energies of H-MN₂H₂ nanosheets.

Figure S4. The PBE band structures of H-NbN₂H₂ multilayers.

Figure S5. The HSE band structures of H-NbN₂H₂ multilayers.

Table S1. The Raman and IR active frequencies of $H-NbN_2H_2$ nanosheet.

Table S2. The Raman and IR active frequencies of T-NbN₂H₂ nanosheet.

Table S3. The Raman and IR active frequencies of $M-NbN_2H_2$ nanosheet.

Table S4. The Debye temperature of MN_2H_2 nanosheets.

Table S5. The band gaps of semiconducting MN_2H_2 nanosheets.

FIG. 1. [(a)-(c)] The total energy and temperature versus time steps for the H-, T-, and M-VN₂H₂ nanosheets during the AIMD simulations. The dotted lines represent the average values of adjacent data in 1 ps. [(d)-(f)] The snapshots for the final configurations after AIMD simulations.

FIG. 2. [(a)-(c)] The total energy and temperature versus time steps for the H-, T-, and M-TaN₂H₂ nanosheets during the AIMD simulations. The dotted lines represent the average values of adjacent data in 1 ps. [(d)-(f)] The snapshots for the final configurations after AIMD simulations.

FIG. 3. The *n*-layer exfoliation energies $(E_{exf}(n))$ of H-MN₂H₂ (M=V/Nb/Ta) nanosheets. Here, $E_{exf}(n)$ is calculated as $(E_{iso}(n) - E_{bulk} \times n/m)/A$. $E_{iso}(n)$ is the unit cell energy of an isolated *n*-layer slab structure, E_{bulk} is the unit cell energy of a bulk material with *m* layers, and *A* is the in-plane area of the bulk unit cell. For these H-MN₂H₂ systems, a 2*H*-NbS₂-like structure is adopted as their bulk references.

FIG. 4. The PBE band structures of $\text{H-NbN}_2\text{H}_2$ (a) bilayer, (b) trilayer, (c) four-layer, and (d) five-layer systems at the FM state. The corresponding PBE band gaps are 0.12, 0.035 and ~0 eV for the bilayer, trilayer, and four-/five-layer ones, which are all smaller than the monolayer case (0.29 eV).

FIG. 5. The HSE band structures of the $\text{H-NbN}_2\text{H}_2$ (a) bilayer, (b) trilayer, (c) four-layer, and (d) five-layer systems at the FM state. The corresponding HSE band gaps are 1.20, 1.15, 1.14 and 1.12 eV for the bilayer, trilayer, four-layer and five-layer ones, which are also smaller than the monolayer case (1.22 eV).

$\mathrm{H} ext{-NbN}_{2}\mathrm{H}_{2}$											
Raman	ω_1	ω_2	ω_3	ω_4	ω_5	ω_6	IR	ω'_1	ω_2'	ω'_3	ω'_4
modes	E"	E'	A_1'	E"	E'	A'_1	modes	E'	A_2 "	E'	A_2 "
(cm^{-1})	335	410	653	660	695	3392		410	592	695	3393

TABLE I. The frequencies of the Raman and IR active vibrational modes in the $\mathrm{H}\text{-}\mathrm{NbN_2H_2}$ nanosheet.

$T-NbN_2H_2$									
Raman	ω_1	ω_2	ω_3	ω_4	IR	ω_1'	ω_2'	ω'_3	ω'_4
modes	E_g	E_g	A_{1g}	A_{1g}	modes	E_u	E_u	A_{2u}	A_{2u}
(cm^{-1})	379	533	572	3392		210	533	580	3394

TABLE II. The frequencies of Raman and IR active vibrational modes in the $\mathrm{T}\text{-}\mathrm{Nb}\mathrm{N}_{2}\mathrm{H}_{2}$ nanosheet.

$M-NbN_2H_2$										
Raman+IR	ω_1	ω_2	ω_3	ω_4	ω_5	ω_6	ω_7	ω_8	ω_9	
modes	A'	A"	A"	A'	A'	A"	A'	A"	A'	
(cm^{-1})	124	153	235	240	320	368	382	408	430	
	ω_{10}	ω_{11}	ω_{12}	ω_{13}	ω_{14}	ω_{15}	ω_{16}	ω_{17}	ω_{18}	
	A"	A'	A"	A'	A'	A"	A'	A'	A"	
	470	475	521	524	580	607	617	652	658	
	ω_{19}	ω_{20}	ω_{21}	ω_{22}	ω_{23}	ω_{24}	ω_{25}	ω_{26}	ω_{27}	
	A'	A'	A"	A'	A'	A'	A'	A'	A'	
	670	691	715	783	799	3325	3412	3422	3442	

TABLE III. The frequencies of Raman and IR active vibrational modes in the $M-NbN_2H_2$ nanosheet.

$\theta_D(\mathbf{K})$	H-phase	T-phase	M-phase
$\mathrm{VN}_{2}\mathrm{H}_{2}$	376	248	262
NbN_2H_2	261	173	198
$\mathrm{TaN}_{2}\mathrm{H}_{2}$	199	139	155

TABLE IV. The Debye temperature of MN_2H_2 nanosheets. Here, the Debye temperature (θ_D) is estimated from the phonon bands as $\frac{1}{\theta_D^3} = \frac{1}{3}(\frac{1}{\theta_{FA}^3} + \frac{1}{\theta_{TA}^3} + \frac{1}{\theta_{LA}^3})$, where $\theta_{FA}/\theta_{TA}/\theta_{LA}$ is obtained from the highest frequency of flexural acoustic (FA)/transverse acoustic (TA)/longitudinal acoustic (LA) phonon branches as $\theta = \hbar \omega_{max}/k_B$ (\hbar and k_B are the Planck constant and Boltzmann constant, respectively).

	VN_2H_2			Ν	NbN_2H	2	$\mathrm{TaN}_{2}\mathrm{H}_{2}$		
(eV)	Η	Т	М	Η	Т	М	Η	Т	М
PBE	0.73	0.09	metal	0.32	metal	0.12	0.15	metal	0.21
PBE+soc	0.72	0.07	metal	0.27	metal	0.09	0.05	metal	0.13
HSE	2.01	1.50	metal	1.22	0.39	0.91	0.96	metal	0.97
HSE+soc	1.99	1.50	metal	1.17	0.39	0.89	0.88	metal	0.86

TABLE V. The band gaps of H-, T- and M-MN₂H₂ (M=V/Nb/Ta) nanosheets by the PBE, PBE+soc, HSE and HSE+soc calculations.