Supporting Information

Synthesis of low-symmetry 2D $Ge_{(1-x)}Sn_xSe_2$ alloy flakes with anisotropic optical response and birefringence

Yijun Liu,^a Minghui Wu,^b Zhaoyang Sun,^c Shengxue Yang, *^a Chunguang Hu,^c Li Huang,^b Wanfu Shen,^c Bin Wei,^d Zhongchang Wang,^d Shiqi Yang,^e Yu Ye,^e Yan Li^f and Chengbao Jiang*^a

^aSchool of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China. ^bDepartment of Physics, Southern University of Science and Technology, Shenzhen 518005, P. R. China

^cState Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Weijin Road, CN-300072 Tianjin, P. R. China

^dDepartment of Quantum and Energy Materials, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, Braga 4715-330, Portugal

^eState Key Laboratory for Artificial Microstructure & Mesoscopic Physics, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China

^fState Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, China

*Corresponding Author: Email: <u>sxyang@buaa.edu.cn</u>, <u>jiangcb@buaa.edu.cn</u>

Supporting Figures and Tables

Fig. S1 Band structure and the first Brillouin zone of bulk GeSe₂ (a) and bulk SnSe₂ (b).

Fig. S2 (a-i) OM images of the $Ge_{(1-x)} Sn_x Se_2$ alloy flakes on the mica substrates under different growth conditions corresponding to Table S1.

Fig. S3 (a-f) OM and AFM images of as-grown $SnSe_2$ (a-c) and $GeSe_2$ (d-f) flakes on the mica substrates.

Fig. S4 EDS images of the $Ge_{0.86}Sn_{0.14}Se_2$ alloy flakes, which were synthesized at 500 °C for 10 min with the mixed gas (Ar/H₂) flow rate of 16 sccm, then cooling down to the room temperature naturally. (a) TEM image of a single as-grown alloy flake. (b-d) EDS mapping of Ge, Sn, and Se elements, respectively. (e) EDS spectrum of the as-grown flake.

Fig. S5 EDS images of the $Ge_{0.74}Sn_{0.26}Se_2$ alloy flakes, which were synthesized at 550 °C for 10 min with the mixed gas (Ar/H₂) flow rate of 20 sccm, then cooling down to the room temperature naturally. (a) TEM image of a single as-grown alloy flake. (b-d) EDS mapping of Ge, Sn, and Se elements, respectively. (e) EDS spectrum of the as-grown flake.

Fig. S6 EDS images of the $Ge_{0.03}Sn_{0.97}Se_2$ alloy flakes, which were synthesized at 550 °C for 10 min with the mixed gas (Ar/H₂) flow rate of 16 sccm, then cooling down to the room temperature naturally. (a) TEM image of a single as-grown alloy flake. (b-d) EDS mapping of Ge, Sn, and Se elements, respectively. (e) EDS spectrum of the as-grown flake.

Fig. S7 EDS spectrum of the $Ge_{0.88}Sn_{0.12}Se_2$ flake.

Fig. S8 Raman spectra of as-grown SnSe₂ (red line), GeSe₂ (blue line), and Ge_{0.88}Sn_{0.12}Se₂ (black line) flakes on the mica substrates.

Fig. S9 (a-c) Schematic diagrams of the $Ge_{0.88}Sn_{0.12}Se_2$ crystal structure viewed from different directions.

Fig. S10 (a, b) HRTEM (a) and SAED (b) images of the Ge_{0.88}Sn_{0.12}Se₂ flake.

Fig. S11 (a-d) OM and AFM images of the 49.2 nm (a, c) and 105.8 nm (b, d) thick $Ge_{0.88}Sn_{0.12}Se_2$ flakes, respectively. (e) The corresponding Raman spectra of the $Ge_{0.88}Sn_{0.12}Se_2$ flakes with different thicknesses and the blank mica substrate. The spectrum of Area 3 was magnified ten times.

Fig. S12 (a) OM and (b) AFM images of a $Ge_{0.88}Sn_{0.12}Se_2$ flake used for the ADRDM characterization.

Fig. S13 (a) OM and (b) AFM images of a Ge_{0.88}Sn_{0.12}Se₂ flake on a quartz substrate.

Fig. S14 (a) POM images of a $Ge_{0.88}Sn_{0.12}Se_2$ flake at different rotation angles $(0 - 165^{\circ})$. (b, c) RGB optical brightness intensities of the reflected light from the $Ge_{0.88}Sn_{0.12}Se_2$ flake (b) and the blank 285 nm SiO₂/Si substrate (c), respectively.

No.	Holding temperature/°C	Holding time/min	Gas flow rate/sccm	Cooling method
1-a	515	7	16	rapid cooling
2-b	515	10	16	rapid cooling
3-с	515	10	16	natural cooling
4-d	500	30	12	natural cooling
5-е	500	30	16	natural cooling
6-f	500	30	20	natural cooling
7-g	500	10	16	natural cooling
8-h	530	10	16	natural cooling
9-i	550	10	16	natural cooling

Table S1. Different growth conditions of $Ge_{(1-x)} Sn_x Se_2$ alloy flakes.