Supplemental Materials for

Fe stabilized metallic phase of NiS₂ for highly efficient oxygen evolution reaction

Xingyu Ding,^a Weiwei Li,^b Haipeng Kuang,^a Mei Qu,^a Meiyan Cui,^a Chenhao Zhao,^a Dong-Chen Qi,^d Freddy E. Oropeza^{*}^c and Kelvin H. L. Zhang^{*}^a

^aState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China. ^bDepartment of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom ^cLaboratory of Inorganic Materials Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P. O. Box 513, 5600MB Eindhoven, The Netherlands ^dSchool of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia

Email: freddyoropeza@gmail.com and kelvinzhang@xmu.edu.cn

Table S1 The actual doped Fe concentrations in $Fe_xNi_{1-x}S_2$ measured by inductively coupled plasma mass spectrometry (ICP-MS). The actual x values are calculated using

$$x = \frac{\rho_{Fe}}{M_E} \div \left(\frac{\rho_{Fe}}{M_E} + \frac{\rho_{Ni}}{M_{Ni}}\right)$$

the following equation: $M_{Fe} \quad M_{Fe} \quad M_{Ni}$, where ρ represents the concentration of metal element in the solution obtained from ICP-MS, $M_{Fe} = 55.85$ g mol⁻¹, $M_{Ni} = 58.69$ g mol⁻¹.

x in Fe _x Ni _{1-x} S ₂	The concentrations of metal element from ICP-MS		x in $Fe_xNi_{1-x}S_2$
	$ ho_{Fe} (\mathrm{mg}\mathrm{L}^{-1})$	$ ho_{Ni} (\mathrm{mg}\mathrm{L}^{-1})$	from ICP-MS
0	0	6.31	0
0.05	0.29	6.23	0.046
0.10	0.48	4.72	0.097
0.15	0.66	3.90	0.151
0.20	1.22	5.34	0.194

Fig. S1 S 2p XPS spectra of as-synthesized NiS₂ and Fe_{0.1}Ni_{0.9}S₂ nanosheets.

Fig. S2 (a) Ni L-edge XAS spectra of as-synthesized $Fe_xNi_{1-x}S_2$ (x=0, 0.05, 0.10 and 0.20) along with reference spectra of single crystal NiS₂ representing Ni²⁺ and LiNiO₂ representing Ni³⁺. (b) Fe L-edge XAS spectra of as-synthesized Fe_xNi_{1-x}S₂ (x=0.05, 0.10 and 0.20) along with reference spectra of FeS₂ representing Fe²⁺ and Fe₂O₃ representing Fe³⁺. The results suggest oxidization state of Ni and Fe in Fe_xNi_{1-x}S₂ are consistent with +2.

Fig. S3 (a) SEM images of as-synthesized $Fe_xNi_{1-x}S_2(x=0, 0.05, 0.10 \text{ and } 0.20)$. (b) Plot of current density v.s. scan rates extracted from Fig. S4; the slope is double layer capacitance (C_{dl}) and is proportional to electrochemical active surface area (ECSA). This data suggests all samples have similar ECSA.

Fig. S4 Cyclic voltammogram of curves of $Fe_xNi_{1-x}S_2$ with different scan rates (0.02, 0.04, 0.06, 0.08, 0.10, 0.12 V s⁻¹): (a) x = 0; (b) x = 0.05; (c) x = 0.10; (d) x = 0.20.

Fig. S5 Chronopotentiometric curves for first 8 hours of NiS_2 and $Fe_{0.1}Ni_{0.9}S_2$ extracted from Fig. 3d.

Fig. S6 (a) SEM image of as-synthesized $Fe_{0.1}Ni_{0.9}S_2$ powder (denoted as $Fe_{0.1}Ni_{0.9}S_2$) and $Fe_{0.1}Ni_{0.9}S_2$ prepared on carbon paper (denoted as $Fe_{0.1}Ni_{0.9}S_2$ _C). (b) XRD patterns of the catalysts powder (denoted as NiS_2 and $Fe_{0.1}Ni_{0.9}S_2$) and the catalysts prepared on carbon paper (denoted as NiS_2 _C and $Fe_{0.1}Ni_{0.9}S_2$ _C). (c) Linear sweep voltammetry (LSV) polarization curves of $Fe_xNi_{1-x}S_2$ (x=0, 0.05, 0.10 and 0.20) prepared on carbon paper.

Fig. S7 Nyquist plots of the EIS at potential of ± 1.63 V vs. RHE for (a) NiS₂ after 3, 20 and 50 cycles of OER measurements; (b) Fe_{0.1}Ni_{0.9}S₂ after 3, 20 and 50 cycles of OER measurements; Inset show the equivalent circuit for fitting the data, consisting of an electrolyte resistance (R_s), a charge transfer resistance (R_{ct1}) caused by electron transfer from electrolyte to the catalyst, and a resistance (R_{ct2}) caused by electron transfer from Fe_xNi_{1-x}OOH layer to Fe_xNi_{1-x}S₂ layer.

Fig. S8 XRD patterns of the as-synthesized samples (denoted as NiS_2 and $Fe_{0.1}Ni_{0.9}S_2$) and those of the samples after V-t test (denoted as NiS_2 -V-t and $Fe_{0.1}Ni_{0.9}S_2$ -V-t).

Fig. S9 S 2p XPS spectra for NiS_2 and $Fe_{0.1}Ni_{0.9}S_2$ after 25 hours stability test.

Table S2 Lattice parameters and the bond length of $Fe_xNi_{1-x}S_2$ (x=0, 0.05, 0.10 and 0.20) and FeS₂. The shorter Ni/Fe-S bond lengths suggest larger Ni/Fe-S binding energies, and thereby higher energy barrier to break Ni/Fe-S bonds for transformation of $Fe_xNi_{1-x}S_2$ into $Fe_xNi_{1-x}OOH$.

x in $Fe_xNi_{1-x}S_2$	a (Å)	Ni-S (Å)	S-S (Å)	Fe-S (Å)
0.00	5.679	2.400	2.038	-
0.05	5.677	2.398	2.046	-
0.10	5.674	2.396	2.048	-
0.20	5.667	2.390	2.077	-
FeS ₂ ¹	5.404	-	2.171	2.259

Reference

1. M. Elliott, J. Chem. Phys., 1960, 33, 903-905.