Electronic Supplementary Information

CoSe₂ hollow microspheres, nano-polyhedrons and nanorods as pseudocapacitive Mg-storage materials with fast solid-state Mg²⁺ diffusion kinetics

Dong Chen,^a Yujie Zhang,^a Xue Li,^a Jingwei Shen,^a Zhongxue Chen,^a Shun-an Cao,^{*a}

Ting Li,*b and Fei Xu*a

^a Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.

^b Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission, Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.

* E-mail:

Fei Xu (xufei2058@whu.edu.cn)

Shun-an Cao (2009302600019@whu.edu.cn)

Ting Li (liting@mail.scuec.edu.cn)

Fig. S1 (a) Schematic drawing and (b, c, d) photos of the lab-made PTFE cell used for Mg cell tests. The cell is made of PTFE cell body and carbon rod electrode. The crack is sealed with epoxy resin. PTFE tape is used for sealing during cell fabrication.

Fig. S2 Overall XPS spectra of H-CoSe₂, P-CoSe₂ and R-CoSe₂.

Fig. S3 SEM images of H-CoSe₂.

Fig. S4 (a) N₂ adsorption-desorption isotherms and (a) pore size distribution curves of H-CoSe₂, P-CoSe₂ and R-CoSe₂.

Fig. S5 Cycling performance of a blank carbon cloth in Mg cells at 50 mA g^{-1} . The capacity is calculated by the mass of $CoSe_2$ for a better comparison.

Fig. S6 Cycling performance of (a) H-CoSe₂, (b) P-CoSe₂ and (c) R-CoSe₂ at 50 mA g^{-1} .

Fig. S7 CV curves of (a) H-CoSe₂ and (b) P-CoSe₂ at a scan rate of 0.1 mV s⁻¹.

Fig. S8 Typical discharge/charge profiles of (a) H-CoSe_2 and (c) P-CoSe_2 and rate capability of (b) H-CoSe_2 and (d) P-CoSe_2 at different current densities varies from 50 to 1000 mA g⁻¹.

Fig. S9 Long-term cycling performance of (a) P-CoSe₂ and (b) R-CoSe₂ at 200 mA g⁻¹.

	H-CoSe ₂		P-CoSe ₂		R-CoSe ₂	
peak	$I_{\rm p}/v^{1/2}$	<i>D</i> (cm ² s ⁻¹)	$I_{\rm p}/v^{1/2}$	<i>D</i> (cm ² s ⁻¹)	$I_{\rm p}/v^{1/2}$	<i>D</i> (cm ² s ⁻¹)
0.85 V	0.00644	7.7×10 ⁻¹³	0.01269	3.0×10 ⁻¹²	0.01778	5.9×10 ⁻¹²
1.50 V	0.00449	3.7×10 ⁻¹³	0.01669	5.2×10 ⁻¹²	0.02327	1.0×10 ⁻¹¹
1.90 V	0.00779	1.1×10 ⁻¹²	0.02065	7.9×10 ⁻¹²	0.02327	1.0×10 ⁻¹¹

Table S1 Results of diffusion coefficient of Mg^{2+} calculated by CV measurements.