Supplementary information

Sandwich-like Electron Transport Layer to Assist Highly Efficient Planar Perovskite Solar Cells

Zhichao Lin*,† Jingjing Yan,† Qingbin Cai, Xiaoning Wen, Hongye Dong and Cheng Mu*

Department of Chemistry Renmin University of China, Beijing, 100872, P. R. China.

[†]These authors contributed equally.

*All correspondence should be addressed to:

Cheng Mu

E-mail addresses: cmu@ruc.edu.cn (Cheng Mu).

Zhichao Lin

E-mail addresses: linzc@stu.shzu.edu.cn (Zhichao Lin).

Samples	$E_{g}(eV)$	$E_{\text{cut-off}}(\text{eV})$	$E_{\rm F}({\rm eV})$	$E_{\rm VB}({\rm eV})$	$E_{\rm CB}({\rm eV})$
SnO ₂	3.62	16.35	4.87	7.85	4.23
MgO/SnO ₂ /EA	3.69	16.56	4.66	7.81	4.12

Table S1. Band gaps (E_g), secondary-electron cut-off ($E_{cut-off}$), Fermi level (E_F), valence band (E_{VB}) and conduction band (E_{CB}) for single SnO₂ and MgO/SnO₂/EA films.

In order to get the Fermi level (E_F), we use $E_F = E_{cut-off} - 21.22$ eV, where $E_{cut-off}$ is cut-off binding energy, and 21.22 eV is emission energy from the He I irradiation. The $E_{cut-off}$ of single SnO₂ and MgO/SnO₂/EA films are 16.35 eV and 16.56 eV, respectively. The E_F of single SnO₂ and MgO/SnO₂/EA films are calculated as -4.87 eV and -4.66 eV, respectively. The E_{VB} of single SnO₂ and MgO/SnO₂/EA films are -7.85 and -7.81 eV, calculated using $E_{VB} = E_F - E_F$, edge (Fermi edge). According to the absorption spectrum and Tauc plot, the band gap (E_g) of single SnO₂ (3.62 eV) and the MgO/SnO₂/EA (3.69 eV) are obtained. The E_{CB} obtained from E_g and E_{VB} is -4.23 eV and -4.12 eV, respectively.

Samples	τ_1 (ns)	τ_2 (ns)
SnO ₂	26.52	83.05

6.36

54.20

Table S2. τ_1 and τ_2 from PL decay spectra with different samples.

The PL decay fitting curve is based on a bi-exponential rate law:

 $f(t) = A_1 exp(-t/\tau_1) + A_2 exp(-t/\tau_2) + y_0$

MgO/SnO₂/EA

Here, τ_1 represents trap-assisted recombination, and τ_2 demonstrates free carrier recombination, A₁ and A₂ represent the decay amplitude, and y₀ is a constant for baseline offset.

Table S3. The fitted parameters for EIS measurements acquired under dark based on different samples.

Samples	$R_{\rm s}$ (Ω cm ²)	$R_{\rm rec} \left(\Omega \ { m cm}^2 ight)$
SnO ₂	2.60	1.16×10^{4}
MgO/SnO ₂ /EA	1.98	$3.33 imes 10^4$

Figure S1. SEM image of FTO glass.

Figure S2. AFM images of a) FTO glass, b) FTO/SnO₂ film, c) FTO/MgO/SnO₂/EA film, perovskite film deposited on d) single SnO₂ and e) MgO/SnO₂/EA surface.

Figure S3. Grain-size distribution of perovskite films deposited on a) a single SnO_2 ETL, b) a MgO/SnO₂/EA ETL.

Figure S4. a, b) UPS and c) UV-Vis spectra of the MgO/SnO₂/EA and single SnO₂ films.

Figure S5. a) XPS survey spectra of the MgO, MgO/SnO₂, and MgO/SnO₂/EA films and high-resolution O 1s XPS spectrum of the b) FTO/MgO and c) FTO/MgO/SnO₂/EA films.

Figure S6. Steady state efficiency and photocurrent density output of PSC with MgO/SnO₂/EA as the ETL.

Figure S7. Photo and electric field stability test of the unencapsulated MgO/SnO₂/EA sandwich ETL and single SnO₂ ETL devices under continuous illuminated in ambient air ($20 \pm 5\%$ relative humidity, 20 ± 5 ° C), at a bias voltage of 0.9 V.