Supporting Information

Multi-gate Memristive Synapses Realized with Lateral

Heterostructures of 2D WSe₂ and WO₃

Hui-Kai He, Rui Yang*, He-Ming Huang, Fan-Fan Yang, Ya-Zhou Wu, Jamal Shaibo, Xin Guo*

State Key Laboratory of Material Processing and Die & Mould Technology, Laboratory of Solid State Ionics, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

Figure S1. Fabrication process of Pd-WSe₂-WO₃-Pd memristive devices.

Figure S2. Electron-probe microanalyzer (EPMA) composition analysis of the WO₃-WSe₂ heterostructure. One can clearly see three regions in the heterostructure, *i.e.*, a WO₃ region, a WSe₂ region and an intermediate transition layer.

Figure S3. (a) HRTEM image of the WSe₂ region in the WO₃-WSe₂ heterostructure, showing very small oxidized amorphous regions (hightlighted by green dotted lines). (b) HRTEM image of the intermediate transition layer in the WO₃-WSe₂ heterostructure, showing amorphous WO₃ and hexagonal WSe₂. The interface between the hexagonal WSe₂ and amorphous WO₃ domains is hightlighted by the green dotted line.

Figure S4. (a) Typical transfer curve of the Pd-WSe₂-WO₃-Pd device at $V_{DS} = 0.5$ V, which clearly shows *p*-type characteristics. (b) Typical photoresponse of the Pd-WO₃-WSe₂-Pd device at $V_{DS} = 0.1$ V. It exhibits a persistent photoconductivity (PPC) effect when turning off the light; the current decays to the initial state after the light is off.

Figure S5. (a) *I-V* curve of the Pd-WSe₂-Pd device before the oxygen plasma treatment, and corresponding oxygen and selenium distributions as measured by EPMA. (b) *I-V* curve of the Pd-WSe₂-Pd device after the oxygen plasma treatment, and corresponding oxygen and selenium distributions as measured by EPMA. Before the oxygen plasma treatment, WSe₂ shows no oxidation and the Pd-WSe₂-Pd device exhibits no *I-V* hysteresis. After the oxygen plasma treatment, part of WSe₂ is oxidized into WO_{3-y}, consequently, the *I-V* hysteresis is observed in the Pd-WSe₂-Pd device.

Figure S6. The *I-V* hysteresis as a function of ambient atmospheres, e.g. vacuum (10⁻⁶ Pa), pure oxygen and air. The *I-V* hysteresis disappears in vacuum and pure oxygen, but appears in air, demonstrating that the resistive switching is related to moisture in air.

Figure S7. *I-V* characteristics of the W-WSe₂-WO₃-Pd device. It exhibits small *I*-V hysteresis because the hydrogen adsorption capacity of W is not as good as that of Pd.

Figure S8. PSC triggered by electric pulse with amplitude of 2 V and width of 2 ms.

Energy consumption is calculated from the equation: $E = I_{peak} \times V \times t$

Where I_{peak} is the maximum value of generated PSC, *t* is the pulse width, and *V* is the applied voltage. The energy consumption for a electric pulse (2 V, 2 ms) with I_{peak} of 0.685 nA is 2.7 pJ/spike. As the pulse width increases, the energy consumption increases.

Figure S9. Synaptic characteristics controlled by simultaneously applying negative gate voltage and visible light.