Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019

Surpporting Information

Buckled AgNW/Mxene Hybrid Hierarchical Sponges for High-Performance Electromagnetic Interference Shielding

Chuanxin Weng,^{1,2} Guorui Wang,¹ Zhaohe Dai,³ Yongmao Pei,⁴ Luqi Liu^{*1} and Zhong Zhang^{*1}

¹ CAS Key Laboratory of Nanosystem and Hierarchical Fabrication and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China

² University of Chinese Academy of Sciences, Beijing 100049, China

³ Center for Mechanics of Solids, Structures and Materials, Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712, USA

⁴ State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China.

*Email: liulq@nanoctr.cn; zhong.zhang@nanoctr.cn

Figure S1. (a) The schematic of hot-pressing process. (b) The digital photo of sample after hot-pressing.

Figure S2. (a) and (b) SEM pictures for AgNW. The distribution of AgNW for (c) length and (d) diameter. The typical length of AgNW is about 41.8 \pm 16.2 μ m, and the diameter is around 73.8 \pm 16.0 nm.

Figure S3. (a) AFM image of the MXene sheets. (b) SEM image of MXene sheets. (c) distribution for lateral size of MXene sheets. The thickness of MXene sheet is about 2.6 nm, and the lateral size is about $2.1 \pm 0.8 \mu$ m.

Figure S4. SEM images of BMF/AgNW/MXene sponge (left) and the magnified cell wall (right).

Figure S5. SEM views of the BMF/MXene foam along the out-of-plane direction (left) and in-plane direction (right).

Figure S6. The porosity of BMF sponges with different compression ratios [the porosity is calculated based on the density of the sponge, and the equation can be described as:

 $p = (1 - \frac{\rho_0}{\rho}) * 100\%$. Here, the *P* is the porosity, ρ_0 is the density of the sponge, ρ is

the density of the melamine resin $(1.57 \text{ g/cm}^3)]^1$.

Table S1. EMI shielding performance of various aerogel/foam/sponge materials (G: graphene; CNT: carbon nanotube; SF: silver plating foam; EP: epoxy; PS: polystyrene; PVDF: polyvinylidene fluoride; PI: polyimide; WPU: water polyurethane; PEI: polyetherimide; PMMA: polymethyl methacrylate).²⁻²⁴

Methods	Matarails	Density	Thickness	EMI SE	EMI SE/t	SSE	SSE/t	Reference
Methous	Materans	(mg/cm ³)	(cm)	(dB)	(dB/mm)	(dB·cm ³ g ⁻¹)	(dB·cm ² g ⁻¹)	Kelerence
	SWCNT/PS	560	0.12	18.5	15.4	33	275	2
	MWCNTs-Fe ₃ O ₄ /PMMA	262	0.25	13.1	5.24	50	200	3
	PS/G	270	0.25	17.3	6.9	64	256	4
Foaming	717 4 544 54 17 17 19	450	0.25	29.3	11.7	65	256	
&	PEI/G	290	0.23	20	8.7	69	68	5
Phase separating	G-Fe ₃ O ₄ /PEI	400	0.25	19	7.6	47.5	190	6
	Pl/G	280	0.08	17	21.25	61	759	7
		280	0.08	21	26.25	75	937	
	MWCNT/PVDF	790	0.2	56.7	28.35	72	360	8
	SF-EP-CN1	609.9	0.2	68.1	34.05	111.66	558.3	9
	Carbon foam	220	0.5	17.2	3.44	78	156	10
		220	0.4	16.3	4	74	185	
		220	0.3	15.7	5.23	71	236.7	
	C/AgNWs	130	0.45	60	13.3	461	1023	11
	Graphite/PDMS	170	0.45	31.1	6.9	183	406.6	12
Corbonizing		190	0.45	35.7	7.8	1/7.4	394	
Carbonizing	DDMS/C	220	0.45	35.8	7.9	222	2222	12
CVD	C/PDMS	00	0.1	20	12.5	333	1300	15
CVD	Carbon NWs/G/PDMS	90	0.2	25	22.5	371	2318 75	14
	G/PDMS	64.1	0.16	21	13.12	328	2050	15
	Ag@C	3.82	0.2	51.2	25.6	13403	67015	16
	A BOOC	3.82	0.3	70.1	23.4	18350.7	61169	10
	C-CNT/CNF	14	0.5	21	4.2	1690	3370	17
	Carbon foam	6	0.1	23	23	3800	38000	18
	MWCNT/WPU	126	0.23	50	21.7	397	1726	19
	Carbon/Graphene	61	0.5	43	8.6	705	1410	20
		61	0.3	27	9	443	1476.7	
		61	0.2	21	10.5	344	1720	
	CNT interface/cellulose	77	0.25	40	16	510	2076	21
	CNT metrix/cellulese	47	0.25	20	0	425	1700	21
	CN1-matrix/cellulose	47	0.25	20	8	425	1700	
		51	0.25	27	10.8	529	2116	
Template		43	0.25	30	12	698	2792	
(freeze-drying		36	0.25	35	14	972	3888	
&	Melamine sponge/G	19	1.2	24	2	1263	1052	22
dip-coating)	PU/G	27	2	12.4	0.6	459	210	23
		27	6	34.7	0.6	1285	210	
		30	2	19.9	1	663	320	
		30	6	57.7	1	1923	320	
	Melamine sponge/G	11	4	37.2	0.93	3410	852.5	24
	BMF/A aNW	43	0.2	40	20	930	4650	This work
	Dim/Agitw	41	0.2	22.0	16.4	200	4000	THIS WOLK
		41	0.2	32.8	10.4	000	4000	
		31	0.2	28	14	903	4515	
	DME/A aNTWA (Van	19	0.2	21 52.6	10.5	1062	5323	
	BMF/AgNW/MXene	49.5	0.2	52.6	26.3	1062	5513	

Reference:

- 1. V. H. Pham and J. H. Dickerson, ACS Appl. Mater. Interfaces, 2014, 6, 14181-14188.
- 2. Y. Yang, M. C. Gupta, K. L. Dudley and R. W. Lawrence, Nano Lett., 2005, 5, 2131-2134.
- 3. H. Zhang, G. Zhang, J. Li, X. Fan, Z. Jing, J. Li and X. Shi, Composites, Part A, 2017, 100, 128-138.
- 4. D.-X. Yan, P.-G. Ren, H. Pang, Q. Fu, M.-B. Yang and Z.-M. Li, J. Mater. Chem., 2012, 22, 18772-18774.
- 5. J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang and W. Zheng, ACS Appl. Mater. Interfaces, 2013, 5, 2677-2684.
- 6. B. Shen, W. Zhai, M. Tao, J. Ling and W. Zheng, ACS Appl. Mater. Interfaces, 2013, 5, 11383-11391.
- 7. Y. Li, X. L. Pei, B. Shen, W. T. Zhai, L. H. Zhang and W. G. Zheng, *RSC Adv.*, 2015, **5**, 24342-24351.
- H. Wang, K. Zheng, X. Zhang, X. Ding, Z. X. Zhang, C. Bao, L. Guo, L. Chen and X. Y. Tian, *Compos. Sci. Technol.*, 2016, **125**, 22-29.
- 9. Y. Xu, Y. Li, W. Hua, A. Zhang and J. Bao, ACS Appl. Mater. Interfaces, 2016, 8, 24131-24142.
- Y. Yuan, Y. Ding, C. Wang, F. Xu, Z. Lin, Y. Qin, Y. Li, M. Yang, X. He, Q. Peng and Y. Li, ACS Appl. Mater. Interfaces, 2016, 8, 16852-16861.
- 11. Y. Yuan, X. Sun, M. Yang, F. Xu, Z. Lin, X. Zhao, Y. Ding, J. Li, W. Yin, Q. Peng, X. He and Y. Li, ACS Appl. Mater. Interfaces, 2017, **9**, 21371-21381.
- H. Li, L. Jing, Z. L. Ngoh, R. Y. Tay, J. Lin, H. Wang, S. H. Tsang and E. H. T. Teo, ACS Appl. Mater. Interfaces, 2018, 10, 41707-41716.
- 13. Z. Chen, C. Xu, C. Ma, W. Ren and H. M. Cheng, Adv. Mater., 2013, 25, 1296-1300.
- 14. X. Y. Sun, X. Liu, X. Shen, Y. Wu, Z. Y. Wang and J. K. Kim, Composites, Part A, 2016, 85, 199-206.
- 15. L. Kong, X. W. Yin, M. K. Han, X. Y. Yuan, Z. X. Hou, F. Ye, L. T. Zhang, L. F. Cheng, Z. W. Xu and J. F. Huang, *Carbon*, 2017, **111**, 94-102.
- 16. Y. J. Wan, P. L. Zhu, S. H. Yu, R. Sun, C. P. Wong and W. H. Liao, Small, 2018, 14, 1800534.
- 17. O. Pitkanen, J. Tolvanen, I. Szenti, A. Kukovecz, J. Hannu, H. Jantunen and K. Kordas, ACS Appl. Mater. Interfaces, 2019, **11**, 19331-19338.
- 18. Y. Tang, D. Li, D. Ao, S. Li and X. Zu, J. Mater. Sci.: Mater. Electron., 2018, 29, 13643-13652.
- 19. Z. H. Zeng, H. Jin, M. J. Chen, W. W. Li, L. C. Zhou and Z. Zhang, Adv. Funct. Mater., 2016, 26, 303-310.
- Y. Yuan, L. Y. Liu, M. L. Yang, T. L. Zhang, F. Xu, Z. S. Lin, Y. J. Ding, C. H. Wang, J. J. Li, W. L. Yin, Q. Y. Peng, X. D. He and Y. B. Li, *Carbon*, 2017, **123**, 223-232.

- 21. L. Q. Zhang, S. G. Yang, L. Li, B. Yang, H. D. Huang, D. X. Yan, G. J. Zhong, L. Xu and Z. M. Li, ACS Appl. Mater. Interfaces, 2018, **10**, 40156-40167.
- 22. C. Liu, S. Ye and J. Feng, Chem. Asian J., 2016, 11, 2586-2593.
- 23. B. Shen, Y. Li, W. Zhai and W. Zheng, ACS Appl. Mater. Interfaces, 2016, 8, 8050-8057.
- 24. T. Guo, X. Chen, L. Su, C. Li, X. Huang and X.-Z. Tang, Materials & Design, 2019, 182, 108029.