

Supporting Information

Homogeneous Platinum Diselenide Metal/Semiconductor Coplanar Structure Fabricated by Selective Thickness Control

Yajie Yang,^{a†} Sung Kyu Jang,^{a†} Haeju Choi,^a Jiao Xu,^{b} Sungjoo Lee^{a,c*}*

^aSKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SSKU), Suwon 440-746, Korea. E-mail: leesj@skku.edu

^bSchool of Microelectronics, Dalian University of Technology, Dalian, Liaoning 116024, China

^cDepartment of Nano Engineering, Sungkyunkwan University, Suwon 440-746, Korea.

*Corresponding Author

E-mail address: leesj@skku.edu.

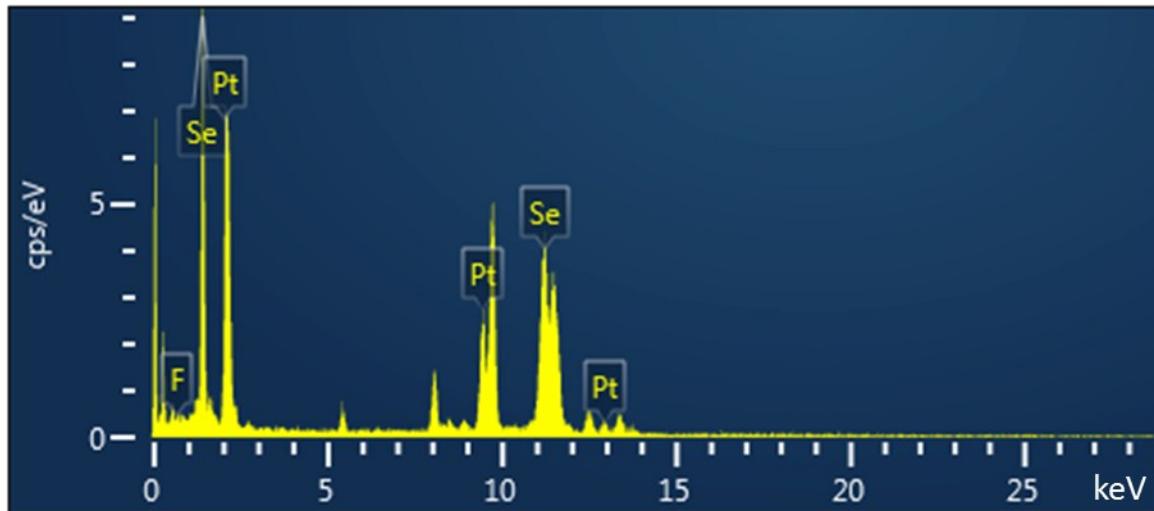


Fig. S1. EDS profile of plasma-treated PtSe_2 flakes.

ICP was employed to etch PtSe_2 flakes using a mixture of Ar and SF_6 as the gas source. The chemical reaction between SF_6 and PtSe_2 generated volatile byproducts, leading to the etching of PtSe_2 . The EDS of the ICP-treated PtSe_2 was carried out, and the results are shown in Fig. S1. The atomic percentage of F is almost 0%, which confirms that F does not remain on the surface of the ICP-treated PtSe_2 . Moreover, no chemical byproducts adhered to the surface of the ICP-treated PtSe_2 .

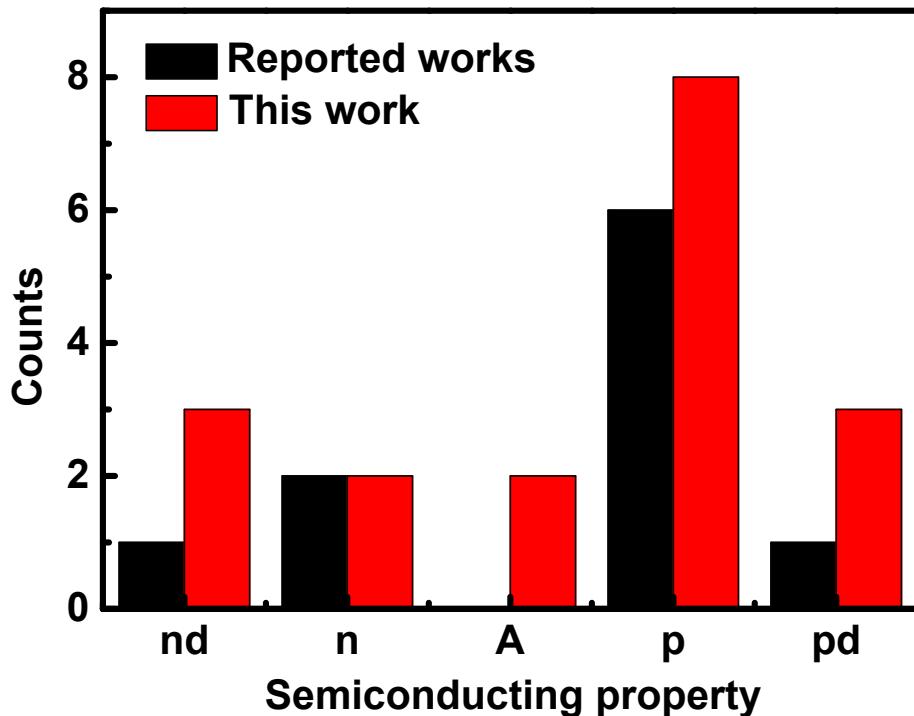


Fig. S2. Distribution of semiconducting properties of PtSe_2 devices ($I_{\text{on}}/I_{\text{off}} > 2$). (nd¹: n-type dominant; n^{2, 3}: n-type; A: ambipolar; p⁴⁻⁹: p-type; pd¹⁰: p-type dominant)

Fig. S2 demonstrates the distribution of PtSe_2 semiconducting properties, including previously reported studies and ours. Different semiconducting properties were obtained for the reported studies and ours, where p-type is the dominant property. For the sake of a clear understanding of this phenomenon and precise control of semiconducting properties of PtSe_2 , a further study is needed.

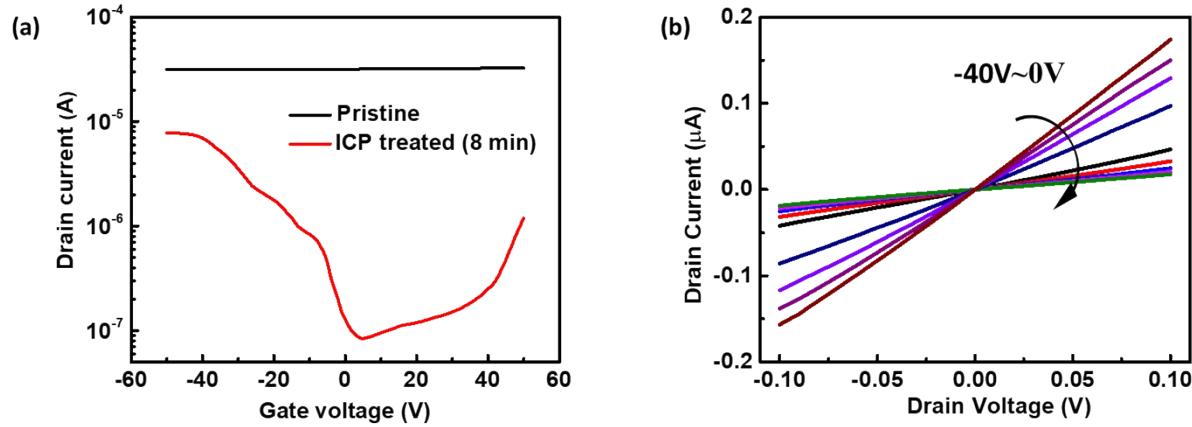


Fig. S3. (a) I_d - V_g curves of pristine and ICP-treated PtSe_2 devices. (b) I_d - V_d curves of plasma-treated PtSe_2 device.

Fig. S3a shows the I_d - V_g curves of the pristine and ICP-treated PtSe_2 devices. Before the ICP treatment, the pristine PtSe_2 device with a thickness of 9 nm shows a metallic property, whereas after the ICP treatment, the thickness of PtSe_2 decreased to 3 nm and it exhibited a semiconducting property. The I_d - V_d curves under different gate voltages (Fig. S3b) proved the semiconducting property of PtSe_2 after the ICP treatment. Moreover, the I_d - V_d curves demonstrate super linearity, confirming the ohmic contact between the PtSe_2 channel and electrode.

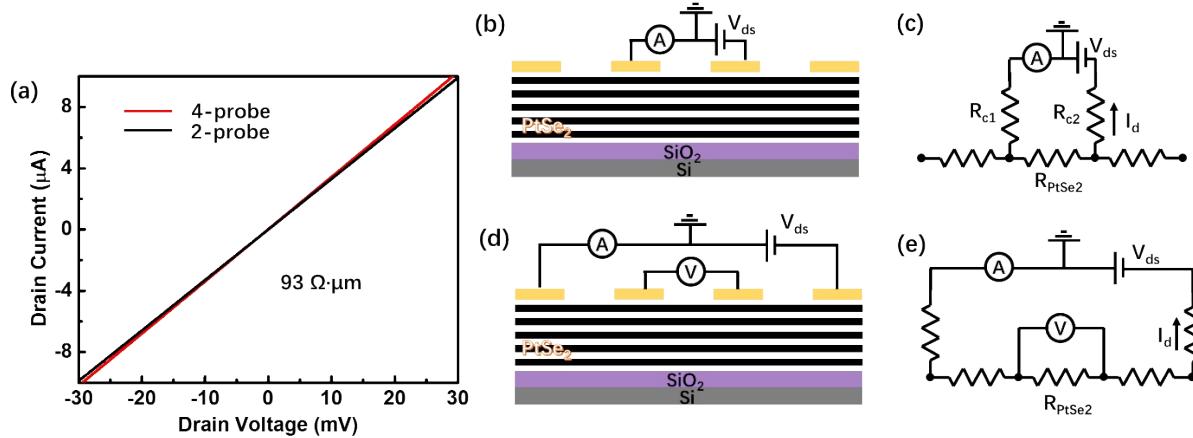


Fig. S4. (a) Extraction of contact resistance of a metallic pristine PtSe₂ device by 4-probe measurements. Schematic (b) and circuit diagram (c) for 2-probe measurements. Schematic (d) and circuit diagram (e) for 4-probe measurements.

The contact resistance between the metallic PtSe₂ and Au layer was determined by 2-probe and 4-probe measurements; the result is shown in Fig. S4, which shows the measurement configurations of the contact resistance between the metallic PtSe₂ and Au layer. First, 2-probe measurements using the inner two electrodes (Fig. S4b) were conducted. The total resistance was evaluated from the drain current I_d and applied voltage V_{ds} , including the PtSe₂ resistance (R_{PtSe2}) between the two inner electrodes and the contact resistance at those inner electrodes ($R_{c1}+R_{c2}$). Then, 4-probe measurements were performed, as shown in Fig. S4d and S4e, where V_{ds} was applied between the outer electrodes and the voltage between the two inner electrodes was measured; R_{PtSe2} was obtained from the measured values of V_{ds} and I_d . Finally, the contact resistance was extracted from the difference between the total resistance and R_{PtSe2} . The contact resistance was found to be 93 $\Omega\cdot\mu\text{m}$, which is consistent with the reported value.³

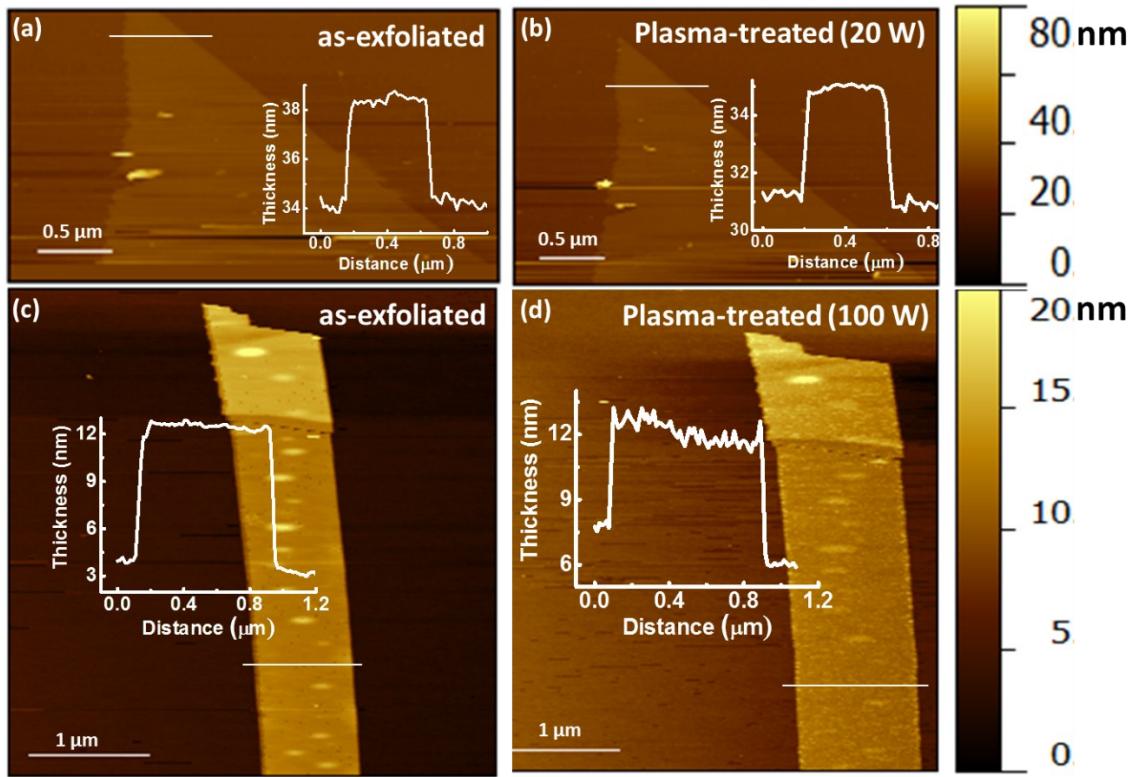


Fig. S5. AFM images of as-exfoliated PtSe₂ flakes (a and c) and plasma-treated PtSe₂ for 3 min with a power value of 20 W (b) and 100 W (d). The PtSe₂ flake in (b) was treated by ICP at 20 W. The PtSe₂ flake in (d) was treated by ICP at 100 W.

Fig. S5a and S5c show the as-exfoliated PtSe₂ flakes without ICP treatment. After ICP treatment at 20 W, the PtSe₂ flakes were not etched and kept their original thickness, as shown in Fig. S5b. However, when the PtSe₂ flakes were treated by ICP at 100 W, surface damage was induced, as shown in Fig. S5d. To control the PtSe₂ thickness without inducing surface damage, the optimal ICP power condition in our study was found to be 25 W.

Table S1. Mobility and I_{on}/I_{off} ratio of PtSe₂ flakes with different thicknesses.

Thickness [nm]	11	7	5	3
I_{on}/I_{off}	2.5	6.9	12	93
Mobility [cm ² V ⁻¹ s ⁻¹]	444	320	300	150

REFERENCES

1. Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji and Y. Chai, *Adv Mater*, 2017, **29**.
2. X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu and Q. J. Wang, *Nat Commun*, 2018, **9**, 1545.
3. A. Ciarrocchi, A. Avsar, D. Ovchinnikov and A. Kis, *Nat Commun*, 2018, **9**, 919.
4. C. Yim, N. McEvoy, S. Riazimehr, D. S. Schneider, F. Gity, S. Monaghan, P. K. Hurley, M. C. Lemme and G. S. Duesberg, *Nano Lett*, 2018, **18**, 1794-1800.
5. T. Y. Su, H. Medina, Y. Z. Chen, S. W. Wang, S. S. Lee, Y. C. Shih, C. W. Chen, H. C. Kuo, F. C. Chuang and Y. L. Chueh, *Small*, 2018, **14**, e1800032.

6. H. Xu, H. Zhang, Y. Liu, S. Zhang, Y. Sun, Z. Guo, Y. Sheng, X. Wang, C. Luo, X. Wu, J. Wang, W. Hu, Z. Xu, Q. Sun, P. Zhou, J. Shi, Z. Sun, D. W. Zhang and W. Bao, *Advanced Functional Materials*, 2019, **29**, 1805614.
7. C. Yim, K. Lee, N. McEvoy, M. O'Brien, S. Riazimehr, N. C. Berner, C. P. Cullen, J. Kotakoski, J. C. Meyer, M. C. Lemme and G. S. Duesberg, *ACS Nano*, 2016, **10**, 9550-9558.
8. E. Okogbue, S. S. Han, T. J. Ko, H. S. Chung, J. Ma, M. S. Shawkat, J. H. Kim, J. H. Kim, E. Ji, K. H. Oh, L. Zhai, G. H. Lee and Y. Jung, *Nano letters*, 2019, DOI: 10.1021/acs.nanolett.9b01726.
9. L. Li, K. Xiong, R. J. Marstell, A. Madjar, N. C. Strandwitz, J. C. M. Hwang, N. McEvoy, J. B. McManus, G. S. Duesberg, A. Goritz, M. Wietstruck and M. Kaynak, *IEEE Transactions on Electron Devices*, 2018, **65**, 4102-4108.
10. W. Jiang, X. Wang, Y. Chen, G. Wu, K. Ba, N. Xuan, Y. Sun, P. Gong, J. Bao, H. Shen, T. Lin, X. Meng, J. Wang and Z. Sun, *InfoMat*, 2019, DOI: 10.1002/inf2.12013.