Supporting Information

Structural evolution from layered Na2Ti3O7 to Na2Ti6O13 nanowires

enabling a highly reversible anode for Mg-ion batteries

Lan Luo^{a, c#}, Yichao Zhen^{a#}, Yanzhong Lu^a, Kaiqiang zhou^a, Jinxian Huang^a, Zhigao

Huang, ^{a, c} Sanjay Mathur ^b and Zhensheng Hong*, ^{a, b}

^a Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian 350117, China
^b Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany. E-mail:winter0514@163.com
^c Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen, 361005, China

[#]These authors contributed equally to this work

Experimental Section

Materials Characterization

X-ray diffraction (XRD) patterns were acquired on a Rigaku Ultima IV diffractometer using Ni filtered Cu Ka radiation (λ =1.5406Å). The morphology and structure of the samples were studied using scanning electron microscopy (SEM, S8010 instrument) and transmission electron microscopy (TEM, TECNAI G2 F20). Raman spectra were obtained using a LabRAM HR Evolution (HORIBA Jobin Yvon) instrument with a 532 nm laser in ambient air. The TG was taken on a TA-60WS in air from room temperature to 800 °C at a heating rate of 10 °C min⁻¹.

Electrochemical Measurements

The CR 2025 coin cells were assembled in an argon-filled glovebox. The working electrode were fabricated to form a freestanding film with 70 wt% active material, 20 wt% conductive carbon (Super P),

and 10wt% polytetrafluoroethylene (PTFE) binder by milling in agate mortar and then dried at 120 °C in the vacuum drying oven about 12 h. Then it was cut and pressed on Ti mesh and the loading for each electrode is approximately 1.5-2 mg cm⁻². Polished Mg foil was used as the counter electrode and glass fiber separator (WhatmanGF/F) was used as the separator. The 0.4M (PhMgCl)₂-AlCl₃/tetrahydrofuran (APC/THF) electrolyte was used as the electrolyte. Galvanostatic charge–discharge measurement was tested on a multichannel battery testing system (Land CT 2001A, China) in the potential range 0.01-2 V versus Mg²⁺/Mg at room temperature. Cyclic voltammetry (CV) were measured on Zennium (Zahner) at a scan rate of 0.5 mV s⁻¹.

Fig.S1 TGA curve of different titanate precursors heated under air condition.

Fig.S2 XRD patterns of (a) NT₃-300 and NT₃-400, (b) NT₆-300 and NT₆-400. SEM images of (C)

NT3-400 and (d) NT6-400.

Fig.S3 Corresponding EDX element mapping images of (a) NT_3 and (b) NT_6 .

Fig.S4 Cyclic voltammograms for NT_3 -300 at a scan rate of 0.5 mV s⁻¹ between 0.01-2 V .

Fig. S5 TG curves of NT_6 obtained under 300°C.

Materials ^{reference}	Electrolyte	Potential range (vs. Mg 2+ /Mg)	ICE	Reversible capacity					
NaMgTi ₃ O ₇ ¹⁹	0.25 M (PhMgCl) ₂ - AlCl ₃ /THF (APC)	0.01-2.00 V	67.4%	91 mA h/g at					
Li ₄ Ti ₅ O ₁₂ ²¹	0.25M Mg(AlCl ₂ BuEt ₂) ₂ /THF	0.01-2.00 V	71.4%	25 mAh/g at 15 mA/g					
${ m TiO_2}$ -B ²⁰	0.4 M APC in THF	0.01-2.00 V	55.6%	79 mAh/g at 10 mA/g					
cation-deficient anatase TiO_2^{22}	0.2 M APC in THF	0.05–2.3 V	84.8%	140mAh/g at 20 mA/g					
B-TiO _{2-x} ²³	0.4 M APC in THF	0.05–2.1 V	70.5%	134mAh/g at 50 mA/g (from the rate performance)					
Na2Ti6O13 This work	0.4 M APC in THF	0.01-2.00 V	89.1%	165.8 mAh/g at 10mA/g					

Table S 1 Comparison of Mg storage performance of related anodes.

Fig.S6 SEM images of (a)NT $_3$ and (b) NT $_6$ electrodes after the first cycle.

Table S2 The contents of the element	for different electrodes	after first cycle.
--------------------------------------	--------------------------	--------------------

Actom%	Na	Ti	Cl	0	Mg
NT ₃	22.29	18.23	8.1	46.17	5.21
NT ₆	14.43	17.15	6.32	53.44	8.67