Supplementary Information

Graphether: A Two-Dimensional Oxocarbon as a Direct Wide-Gap

Semiconductor with High Mechanical and Electrical Performances

Gui-Lin Zhu¹¹, Xiao-Juan Ye^{1,21}, and Chun-Sheng Liu^{1,2*}

¹Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

²School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada

^{*} To whom correspondences should be addressed, E-mail: csliu@njupt.edu.cn ¹The first two authors contributed equally to this work.

Table S1. Several schemes for band gap opening in graphene.

Scheme			Maximum Band Gap (eV)	
spatial confinement	width ~15 nm graphene nanoribbon		0.2 (Ref. 1)	
1	width N=7 grap	hene nanoribbon	1.6 (Ref. 2)	
sublattice-symmetry breaking		uniaxial strain	0.486 (Ref. 3)	
	strain engineering	anisotropic biaxial strain	1.0 (Ref. 4)	
		shear strain	0.4 (Ref. 4), 0.95 (Ref. 5)	
		В	0.14 (Refs. 6,7)	
		Ν	0.14 (Refs. 6,7)	
		0	0.50 (Ref. 7)	
		Р	0.67 (Ref. 8)	
	doping	S	0.57 (Ref. 8)	
		Ga	0.6 (Ref. 9)	
		Ge	0.4 (Ref. 9)	
		As	1.3 (Ref. 9)	
		Se	0.8 (Ref. 9)	
	graphene antidot lattice		1.55 (Ref. 10)	
surface functionalization	fully hydrogenated		3.7 (Ref. 11)	
	fully fluorinated		3.48 (Ref. 12)	
	half hydrogenated		0.43 (Ref. 12)	
	half hydrogenated and half fluorinated		3.70 (Ref. 12)	
	fully oxidized		4.0 (Ref. 13)	
heterostructure	aranha	no/h DN	0.053 (Ref. 14),	
	graphene/n-BN		0.16 (Ref. 15)	
	graphene/SiC		0.26 (Ref. 16)	
	graphene/fully hydroxylated SiO ₂		0.023 (Ref. 17)	
	graphene/O-terminated SiO ₂		0.044 (Ref. 17)	
electrically tunable	bilayer		0.1 (Ref. 18),	
band gap in			0.25 (Ref. 19)	
multilayer graphene	tril	ayer	0.12 (Ref. 20)	

Computational details of the carrier mobility and in-plane stiffness

We estimate the carrier mobility for graphether at room temperature (300 K) by

using the equation
$$\mu_x \approx \frac{e\hbar^3 \left(\frac{5C_x + 3C_y}{8}\right)}{k_B T m_x^{\frac{3}{2}} m_y^{\frac{1}{2}} \left(\frac{9E_{1x}^2 + 7E_{1x}E_{1y} + 4E_{1y}^2}{20}\right)}$$
, where m_x is the

effective mass in the transport direction and m_y is the effective mass in another direction. The term E_1 defined by $E_1 = \frac{\Delta V}{\left(\Delta l/l_0\right)}$ represents the DP constant of the

valence-band minimum (VBM) for hole or the conduction-band maximum (CBM) for electron along the transport direction. Here, ΔV denotes the energy change of VBM or CBM when graphether is compressed or dilated from the equilibrium l_0 by a distance of Δl . The term $C_x(C_y)$ is the in-plane stiffness of the longitudinal strain in the x(y)direction, which can be derived from $\frac{\Delta E}{S_0} = C_x \frac{(\Delta l/l_0)^2}{2}$. ΔE denotes the total energy difference under each strain, and S_0 is the lattice area of pristine graphether. We use

Fig. S1 (a) DP constants and (b) in-plane stiffness of graphether along x and y directions at the HSE06 level of theory.

•					
stacking pattern	lattice parameters (Å)		d_z (Å)	$E_{\rm b}$ (meV Å ⁻²)	band gap (eV)
	а	b	···2 ()	0()	
monolayer	7.229	5.155	-	-	2.39
AA	7.233	5.152	2.003	-33.44	2.27
AB	7.227	5.154	3.451	-9.42	2.31
AC	7.233	5.150	2.150	-27.75	2.27
AD	7.227	5.154	3.516	-9.12	2.32

Table S2. Lattice parameter, interlayer distance (d_z) , binding energy (E_b) , and band gap for bilayer graphether.

Table S3. Structural informations of monolayer graphether and *Pmn*2₁-BNO.

Structure	Space Group	Lattice	Wyckoff Positions (fractional)			
		Parameters	atoms	x	у	Ζ
Graphether	Pmmn	a=3.6144 Å	C(4f)	0.2881	0	0.5180
		b=2.5775 Å	O(2a)	0	0	0.5570
<i>Pmn</i> 2 ₁ -BNO		c=25.0000 Å				
		α=β=γ=90°				
	Pmn2 ₁	a=2.6493 Å	B(2a)	0	0.4811	0.7062
		b=25.0000 Å	N(2a)	0	0.4825	0.2816
		c=3.6579 Å	O(2a)	0	0.4414	0.9897
		α=β=γ=90°				

References

- 1 M. Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, *Phys. Rev. Lett.* 2007, **98**, 206805.
- J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth,
 A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, R. Fasel, *Nature* 2010, 466, 470–473.
- G. Gui, J. Li, J. Zhong, *Phys. Rev. B: Condens. Matter Mater. Phys.* 2008, 78, 075435.
- 4 N. Kerszberg, P. Suryanarayana, *RSC Adv.* 2015, **5**, 43810–43814.
- 5 G. Cocco, E. Cadelano, L. Colombo, *Phys. Rev. B: Condens. Matter Mater.* 2010, **81**, 241412.
- 6 P. Rani, V. K. Jindal, *RSC Adv.* 2013, **3**, 802–812.
- 7 M. Wu, C. Cao, J. Z. Jiang, *Nanotechnology* 2010, **21**, 505202.
- 8 P. A. Denis, *Chem. Phys. Lett.* 2010, **492**, 251–257.
- 9 P. A. Denis, Chem. Phys. Chem. 2014, 15, 3994–4000.
- 10 F. Ouyang, S. Peng, Z. Liu, Z. Liu, ACS Nano 2011, 5, 4023–4030.
- 11 J. O. Sofo, A. S. Chaudhari, G. D. Barber, *Phys. Rev. B: Condens. Matter Mater.* 2007, **75**, 153401.
- 12 J. Zhou, M. M. Wu, X. Zhou, Q. Sun, Appl. Phys. Lett. 2009, 95, 103108.
- 13 J. -A. Yan, M. Y. Chou, *Phys. Rev. B: Condens. Matter Mater.* 2010, **82**, 125403.
- 14 G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, J. van den Brink, *Phys. Rev. B: Condens. Matter Mater. Phys.* 2007, **76**, 073103.
- E. Wang, X. Lu, S. Ding, W. Yao, M. Yan, G. Wan, K. Deng, S. Wang, G. Chen, L. Ma, J. Jung, A. V. Fedorov, Y. Zhang, G. Zhang, S. Zhou, *Nat. Phys.* 2016, 12, 1111–1115.
- 16 S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. De Heer, D. H. Lee, F. Guinea, A. H. Castro Neto, A. Lanzara, *Nat. Mater.* 2007, 6, 770–775.
- 17 T. C. Nguyen, M. Otani, S. Okada, *Phys. Rev. Lett.* 2011, **106**, 106801.
- 18 Y. Hao, L. Wang, Y. Liu, H. Chen, X. Wang, C. Tan, S. Nie, J. W. Suk, T.

Jiang, T. Liang, J. Xiao, W. Ye, C. R. Dean, B. I. Yakobson, K. F. McCarty, P. Kim, J. Hone, L. Colombo, R. S. Ruoff, *Nat. Nanotechnol.* 2016, **11**, 426–431.

- Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie,
 Y. R. Shen, F. Wang, *Nature* 2009, 459, 820–823.
- 20 C. H. Lui, Z. Li, K. F. Mak, E. Cappelluti, T. F. Heinz, *Nat. Phys.* 2011, 7, 944–947.