Supplementary Information for

Temperature-induced nanostructural evolution of hydrogen-rich voids in amorphous silicon: A first-principles study

Parthapratim Biswas, ${ }^{1}$ Durga Paudel, ${ }^{1}$ Raymond Atta-Fynn, ${ }^{2}$ and Stephen R. Elliott ${ }^{3}$
${ }^{1}$ Department of Physics and Astronomy, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA
${ }^{2}$ Department of Physics, The University of Texas at Arlington, Texas 76019, USA
${ }^{3}$ Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom

FIG. 1. A three-dimensional representation of the isosurface of a void obtained from: (a) Harris + LDA; (b) SCF + LDA; and (c) SCF + GGA. The last calculation was conducted using double-zeta (DZ) basis functions for Si atoms. The SCF + GGA yields a slightly open structure of the void, as can be seen from (c). The isosurfaces are constructed using an identical set of visualization parameters.

TABLE I. Comparison of void properties from a 1000 -atom model of a-Si using Harris + LDA, SCF + LDA, and SCF + GGA. R_{Si} and θ indicate the average $\mathrm{Si}-\mathrm{Si}$ nearest-neighbor distance and bond angle on the reconstructed surface of a void of radius $5 \AA . R_{X}$ and Φ_{S} are the estimated linear size from the gyrational radius $(X=g)$ and the convex-hull $(X=H)$ approximation, and the sphericity of the void.

System	Basis $(\mathrm{Si}, \mathrm{H})$	$R_{\mathrm{Si}}(\AA)$	θ (degree)	$R_{g}(\AA)$	$R_{H}(\AA)$	$V_{H}\left(\AA^{3}\right)$	Φ_{S}
Harris + LDA	$\mathrm{SZ}, \mathrm{DZP}$	2.443 ± 0.069	108.407 ± 17.06	6.35	7.12	1245	0.61
SCF + LDA	$\mathrm{SZ}, \mathrm{DZP}$	2.453 ± 0.082	108.517 ± 18.56	6.31	7.13	1244	0.62
SCF + GGA	DZ, DZP	2.457 ± 0.084	109.307 ± 17.58	6.28	7.15	1251	0.59

FIG. 2. The time evolution of the mean-square displacement (MSD) of hydrogen atoms inside three voids V5, V9 and V11 at 300 K (left) and 800 K (right) for a period of 8 picoseconds (ps).

FIG. 3. The large atomistic model with $262,400 \mathrm{Si}$ atoms, which was used to generate SAXS data by introducing 12 nanometer-size voids of diameter $12 \AA$. The size of the model is found to be too large to render as a conventional ball-and-stick model.

