Supplementary Information

Photodeposition of Pd onto TiO₂ nanowires for aqueous-phase selective hydrogenation of phenolics to cyclohexanones

Chenchen Tian,^{a†} Huihuang Fang,^{a†} Hanming Chen,^a Weikun Chen,^a Song Zhou,^{b,c,d} Xinping Duan,^a Xi Liu,^{d,e*} and Youzhu Yuan^{a*}

^aState Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols–Ethers–Esters, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

^bState Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.

^cSchool of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.

^dSchool of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.

^eSyncat@Beijing, Synfules China. Co. Ltd, Beijing, 101407, China.

[†] Chenchen Tian and Huihuang Fang contributed to this work equally.

Sample	S _{BET}	V _{pore} ^a	V _{mes} ^b	V_{mes}/V_{tol}	D _{pore}
	(m^{2}/g)	(cm ³ /g)	(cm ³ /g)	(%)	(nm)
TiO ₂ (P25)	58	0.28	0.26	95.1%	15.6
TNWs-450	220	0.64	0.57	90.4%	9.9
TNWs-550	102	0.85	0.82	96.5%	29.8
TNWs-650	61	0.48	0.47	96.4%	39.3
TNWs-750	40	0.20	0.19	94.4%	32.0

Table S1 Physiochemical properties of TiO₂ samples.

^a Total pore volume of all pores; ^b total volume of mesopores pores.

Table S2 Catalytic performance for cyclohexanone and phenol hydrogenation of Pd/TNWs and Pd/CeO₂.

Frature	Catalwat	Department	Products / %			
Entry	Catalyst	Reactant	Phenol	С=О	С—О	
1	Pd/TNWs	Cyclohexanone	_	83.5	16.5	
2	Pd/CeO ₂	Cyclohexanone	_	11.5	88.5	
3	Pd/TNWs	90%Cyclohexanone+10 %Phenol	5.7	94	0.3	
4	Pd/CeO ₂	90%Cyclohexanone+10 %Phenol	8.2	83.4	8.4	

Typical conditions: 25 mg catalyst, 5.0 mL solvent with 1.0 mmol reactant, 50 °C, 5 bar, stirring at 500 rpm for 2 h.

Fig. S1 (a) SEM image and (b) TGA pattern of titanic acid nanowire synthesized by hydrothermal-ion exchange method.

Fig. S2 N₂ adsorption/desorption isotherms and BJH pore size distributions (inserts) of (a) P25; (b) TNWs-450 °C; (c) TNWs-550 °C, (d) TNWs-650 °C, (e) TNWs-750 °C.

Fig. S3 XRD patterns of (a) P25, (b) TNWs-450 °C, (c) TNWs-550 °C, (d) TNWs-650 °C, and (e) TNWs-750 °C.

Fig. S4 SEM images of (a) P25; (b) TNWs-450 °C; (c) TNWs-550 °C, (d) TNWs-650 °C, and (e) TNWs-750 °C.

Fig. S5 In-situ FTIR spectra of TiO_2 (P25) for pyridine absorption: adsorption for 5 min (black line); evacuation of excess probe molecules under vacuum for 5 min (red line).

Fig. S6 SEM images of Pd/TNWs.

Fig. S7 XPS analyses of Pd/TNWs by photoreduction for different time: (a) 10 min, (b) 60 min, (c) 120 min, (d) 180 min, and (e) 300 min.

Fig. S8 Effect of stirring speed on the phenol conversion over Pd/TNWs.

Fig. S9 In-situ FTIR spectra of TNWs (a) and CeO_2 (b) for cyclohexanone absorption: adsorption for 5 min (black line); evacuation of excess probe molecules under vacuum for 10 min (red line).

Fig. S10 (a) NH_3 -TPD spectra and (b) CO_2 -TPD of TNWs and CeO_2 samples.