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Cluster expansion and special quasirandom structures

The structures of ordered and disordered alloy are determined by cluster expansion (CE)1 and

special quasirandom structures (SQS) approach,2,3 respectively. The CE approach is based

upon a generalized Ising model, where any configuration of N-sites in a binary substitutional

alloy may be represented by a vector σi = (σ1, σ2, ...σN), where σi = +1 or −1 represents

the occupancy of lattice site i by one or the other of the two elemental species. The internal

energy of any configuration is E(σ) =
∑

αmαJα 〈Πασi〉, where α is a cluster, representing

a specific class of interaction (e.g., first nearest pair interactions); mα is a multiplicity that

accounts for the fact that there are redundant representations of the same cluster; Jα is the

interaction energy coefficient associating with cluster α; and the brackets (i.e., correlation

function) denote the spin product over all available sites of a given cluster. The energy

coefficients may be obtained by fitting several configurations and their energies obtained

through DFT calculations; since E(σ) converges quickly with respect to the number of

clusters, only a few clusters are required. Then, given E(σ), one easily finds the ground

state configuration. For a random alloy, the theoretical value of the correlation function of

a k-atom cluster is (2x − 1)k, where x is the composition. The SQS approach is designed

to find the arrangement of atoms in a finite size supercell that provides the best fit to these

correlation functions. This can be used to simulate the properties of a random alloy.

Ordered structures obtained from cluster expansion
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Figure 1: The ordered ground state structures obtained by cluster expansion method for the
(a) mixed anion alloy at x = 1/3, (b) mixed anion alloy at x = 1/2, (c) mixed cation alloy
at x=1/3 and (d) mixed cation alloy at x = 1/2. The structures at x = 2/3 can be obtained
by exchanging the two mixed species at x = 1/3. The red, blue, yellow and orange circles
denote Mo, W, S and Se atoms, respectively. The larger and smaller circles denote the atoms
in the top and bottom atomic plane, respectively.

CBM and VBM difference of TMD alloy heterojunction

The valence band maximum and conduction band minimum difference as a function of com-

position x in six pseudo-binary alloy heterojunctions. The energy band differences are defined

as ∆ECBM = ECBM(x)− ECBM(y) and ∆EVBM = EVBM(x)− EVBM(y).
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Figure 2: The valence band maximum difference for six pseudo-binary alloy heterojunctions.
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Figure 3: The conduction band minimum difference for six pseudo-binary alloy heterojunc-
tions.
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Comparison between SCAN and other methods

Table 1 summarizes the comparison between the predictions of the VBM, CBM and band

gap for four different pure TMDs based on the meta-GGA functional SCAN, the GW ap-

proximation and HSE06 hybrid functional. The data from Ref. 4 and Ref. 5 was extracted

from figures. SCAN generally gives band gaps slightly smaller than those obtained with GW

and HSE06. In comparison with HSE06 results from Ref. 6 and Ref. 7, SCAN yields very

close band gaps for WS2 and WSe2 , but smaller band gaps for MoS2 and MoSe2 cases. The

VBM predicted by SCAN is in good agreement with both the GW and HSE06 predictions,

while the CBM is generally smaller than predicted with GW and HSE06. For band align-

ment, our SCAN results predict that all TMD heterojunctions are Type II, in agreement

with Ref. 5 (GW) /Ref. 7 (HSE06) and experiment (Ref. 8). But in Ref. 6, the MoSe2/WS2

heterojunction was predicted to be of Type I. The conduction band minimum of MoSe2 and

WS2 in Ref. 4 are very close to each other.

Table 1: Comparison between the VBM, CBM and band gap predictions made using SCAN,
GW and HSE06.

SCAN GW HSE06
VBM CBM gap VBM CBM gap VBM CBM gap

MoS2 -6.18 -4.39 1.79 -6.24c -3.89c 2.35c
-6.33a -4.18a 2.15a

-6.27d -4.25d 2.02d

-6.22b -4.03b 2.19b

WS2 -5.93 -3.97 1.96 -5.87c -3.59c 2.28c
-5.86a -3.77a 2.09a

-5.82d -3.84d 1.98d

-6.00b -3.64b 2.36b

MoSe2 -5.54 -3.95 1.59 -5.55c -3.58c 1.97c
-5.54a -3.67a 1.87a

-5.59d -3.87d 1.72d

-5.59b -3.64b 1.95b

WSe2 -5.29 -3.60 1.69 -5.18c -3.22c 1.96c
-5.12a -3.37a 1.75a

-5.16d -3.53d 1.63d

-5.36b -3.29b 2.07b

a Ref. 7
b Ref. 4
c Ref. 5
d Ref. 6
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Band structure of MoS2/WS2
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Figure 4: The band structure of unrotated MoS2/WS2 heterojunction. The zero of energy
is set to the valence band maximum for reference.

Interlayer distance and Van der Waals correction

Different Van der Waals (vdw) corrections methods are tested and compared. We first

calculated the VBM at Γ, VBM at K and CBM at K in unrotated MoS2/WS2 heterojunction

as a function of interlayer distance, as shown in Fig. S5. Unsuperisingly the VBM at K and

CBM at K are independent of interlayer distance, while VBM at Γ is sensitive to that.

We then calculated the interlayer distance using different vdw corrections including DFT-

D3, Tkatchenko-Scheffler (TS, employed in main text), optB86b-vdW and optB88-vdW,

the calculation results are marked by dash lines. The experimental interlayer distance of

bulk MoS2 and WS2 are of 6.15 and 6.16 Å, respectively.9,10 And thus we may approximate

the interlayer distance of the heterojunction as 6.155 Å. The interlayer distance calculated

by PBE without vdw correction is 6.88 Å, which is much larger than experimental value.

However, all vdw corrections yield interlayer distance close to experimental value (no more

than 0.1 Ådifference). Such small difference in interlayer distance will not lead to any

significant variation of VBM at Γ, as shown in Fig. S5.
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Figure 5: The energy level at Γ and K as a function of interlayer distance. The dash lines
represent the interlayer distance calculated using different vdw corrections, as indicated.

Atomic structure of twisted heterojunction

The top view of twisted heterojunctions used in Fig.7 of main text are shown in Fig. S6.

Detail of geometric model

To measure the overlap area, we build a model of two monolayers. A small rhombus mono-

layer is placed on top of a large bottom monolayer. The top and bottom monolayer have

lattice constant a+ and a−, respectively. a+ can be assumed as 1 and parameter p1 = a−/a+

defines the lattice mismatch. The p2 = R+/a+ and p3 = R−/R+ define the circle radius

in two monolayers. The edge length of top monolayer is na+ (n ∈ Z+). Obviously, the

overlaping area Soverlap is a function of p1, p2, p3, n and θ. With given parameter p1, p2, p3,

n, an index can be defined to describe the interlayer interaction as a function of rotation

angle θ:

I(θ) = 1− Soverlap(θ)

Stotal

∣∣∣∣
p1,p2,p3,n

(1)
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21.8° 27.8° 38.2°

16.1° 30° 43.9°

W Mo Se S

Figure 6: The atomic structures (top view) of twisted heterojunctions. The grey, purple,
green and yellow spheres denote W, Mo, Se and S atoms, respectively. The spheres with
lighter shading denote atoms in the lower layer.

where Soverlap(θ) is the overlaping area between circles in two monolayers, and Stotal is the

total area of circles in top monolayer.

Effect of lattice mismatch parameter p1

The parameter p1 defines the lattice mismatch between two monolayers. Withour lose of

generality, we assume a+ ≤ a−, so that p1 ≥ 1. In Fig. S7, we show how the index I(θ)

change when increase p1 from 1 (lattice-matched case such as MoS2/WS2) to 1.044 (lattice-

mismatchd case, such as MoS2/WSe2). Here the other parameters chosen are: p2 = 1/2
√

3,

p3=1, n=22. It is clearly that with p1 increasing, the peaks near 0 and 60◦ become shorter

and wider, while in the middle angular range the index is still a constant indepent of p1 and

θ.
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Figure 7: (a)-(c), the index I(θ) when p1=1, 1.022 and 1.044, respectively.

Effect of circle radius parameter p2 and p3

The parameter p2 and p3 define the circle radius R+ and R− in top and bottom monolayers.

In Fig. S8 (a)(b), we show that index I(θ) as a function of p2 for p1=1 and 1.044, respectively.

In Fig.S 8 (c)(d), we show that index I(θ) as a function of p3 for p1=1 and 1.044, respectively.

Clearly, decreasing p2 and p3 do not change the general trend but only increase the constant

level in middle angular range. The parameter used in Fig. S8 are: (a)-(b), n=22 and p3=1;

in (c)-(d), n=22 and p2 = 1/2
√

3.

Effect of top monolayer size n

The index I(θ) as a function of n is shown in Fig. S9. Here we set other parameters p2 =

1/2
√

3 and p3=1. When p1 = 1, it is clearly that changing n does not change the general

trend. The only difference is that as n incerasing, the width of peaks near 0 and 60◦ become

smaller, so the peaks become more sharp. Similarly, when p1 = 1.044, changing n does not

change the general trend. In the middle angular range, the index is always a constant. But

changing n will change the fluctuation regions (near 0 and 60◦) in their width and height.

Comparison of flake approach and supercell approach

We used the flake approach to calculate the Soverlap and index I(θ), where a limited size

of monolayer flake are placed and rotated on the top of a large bottom monolayer. This
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Figure 9: (a)-(b): the index I(θ) when n=18 (black), 22 (red) and 26 (blue), at p1 = 1 (a)
and p1 = 1.044 (b), respectively.
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approach allows us to obtain continuous numeric result of I(θ) but do not describe the true

infinite large heterobilayer in supercell cases. So here to further validify our flake approach,

we calculated a set of I(θ), following the same definition in main text by using supercell

instead of flake, i.e. n → ∞. The parameter used here is p2 = 1/2
√

3 and p3=1, for

flake approach, n=22. The result is shown in Fig.S 10. Clearly, the index obtained by two

approach match perfectly with each other.
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Figure 10: (a)-(b): the index I(θ) obtained by flake approach (black dots) and supercell
approach (red cross), at p1 = 1 (a) and p1 = 1.044 (b), respectively.

12



References

(1) Sanchez, J. M.; Ducastelle, F.; Gratias, D. Physica A: Statistical Mechanics and its

Applications 1984, 128, 334–350.

(2) Zunger, A.; Wei, S.-H.; Ferreira, L. G.; Bernard, J. E. Physical Review Letters 1990,

65, 353.

(3) Wei, S.-H.; Ferreira, L. G.; Bernard, J. E.; Zunger, A. Physical Review B 1990, 42,

9622.

(4) Pandey, M.; Jacobsen, K. W.; Thygesen, K. S. The Journal of Physical Chemistry C

2016, 120, 23024–23029.

(5) Gong, C.; Zhang, H.; Wang, W.; Colombo, L.; Wallace, R. M.; Cho, K. Applied Physics

Letters 2013, 103, 053513.

(6) Kang, J.; Tongay, S.; Zhou, J.; Li, J.; Wu, J. Applied Physics Letters 2013, 102, 012111.

(7) Özçelik, V. O.; Azadani, J. G.; Yang, C.; Koester, S. J.; Low, T. Physical Review B

2016, 94, 035125.

(8) Keyshar, K.; Berg, M.; Zhang, X.; Vajtai, R.; Gupta, G.; Chan, C. K.; Beechem, T. E.;

Ajayan, P. M.; Mohite, A. D.; Ohta, T. ACS nano 2017, 11, 8223–8230.

(9) Schutte, W.; De Boer, J.; Jellinek, F. Journal of Solid State Chemistry 1987, 70,

207–209.

(10) Srivastava, S. K.; Avasthi, B. N.; Mathur, B. K. Journal of materials science letters

1984, 3, 671–673.

13


