Constructing of efficient dual activating ratiometric YVO₄:Nd³⁺/Eu³⁺ nanothermometer: codoping or mixture

Ilya E. Kolesnikov^{a,b,*}, Daria V. Mamonova^a, Alexey A. Kalinichev^a, Mikhail A. Kurochkin^a, Vasiliy A. Medvedev^a, Evgenii Yu. Kolesnikov^c, Erkki Lähderanta^b, Alina A. Manshina^a

^a St. Petersburg State University, Universitetskaya nab. 7-9, 199034, St. Petersburg, Russia

^b LUT University, Skinnarilankatu 34, 53850, Lappeenranta, Finland

^c Volga State University of Technology, Lenin sqr. 3, 424000, Yoshkar-Ola, Russia

Contact information e-mail address: ie.kolesnikov@gmail.com (I. Kolesnikov) The prolonged temperature measurements were carried out at room temperature upon 590 nm diode excitation. Thermal sensing was performed using two independent techniques: luminescence thermometry and thermocouple. As can be seen from Figure S1, continuous excitation of YVO_4 :Nd³⁺/Eu³⁺ NPs with used diode does not cause raising of the observed temperature.

Figure S1. Evolution of a) co-doped and b) mixed YVO_4 :Nd³⁺/Eu³⁺ samples temperature measured with luminescence thermometry and thermocouple.