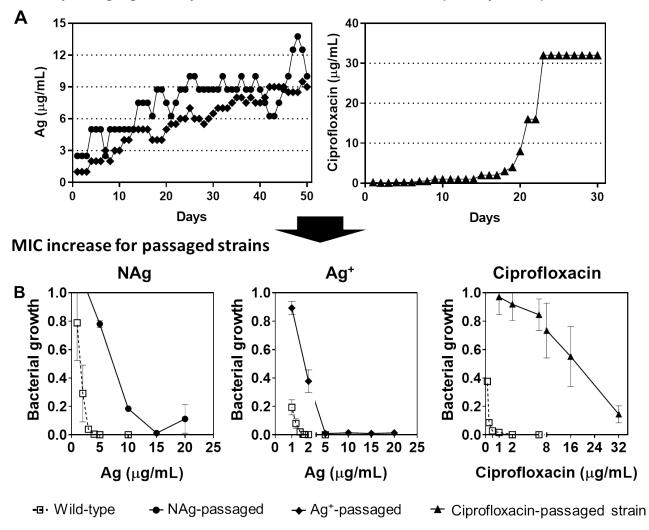
### **Supplementary Information**

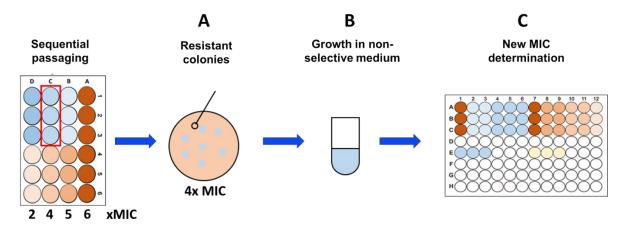
# Heritable Nanosilver Resistance in Priority Pathogen: A Unique Genetic Adaptation and Comparison with Ionic Silver and Antibiotic

Elizabeth Valentin<sup>a</sup>, Amy L. Bottomley<sup>a</sup>, Gayatri S. Chilambi<sup>b</sup>, Elizabeth J. Harry<sup>a</sup>, Rose Amal<sup>d</sup>, Georgios A. Sotiriou<sup>e</sup>, Scott A. Rice<sup>a,b,c</sup>, Cindy Gunawan<sup>a,d,\*</sup>

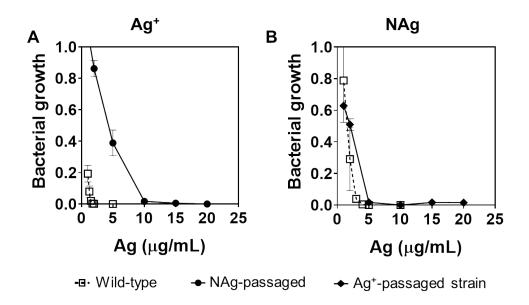

<sup>a</sup>ithree institute, University of Technology Sydney, NSW 2007, Australia

<sup>b</sup>Singapore Centre for Environmental Life Sciences Engineering and <sup>c</sup>School of Biological Sciences, Nanyang Technological University, Singapore.

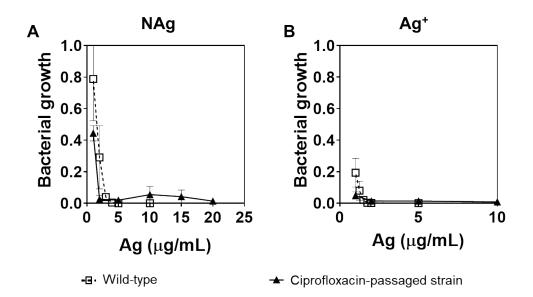
<sup>d</sup>School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia


<sup>e</sup>Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden;

\*Corresponding author at the ithree institute, University of Technology Sydney, NSW 2007, Australia. Tel.: +61 295148203. E-mail address: <u>Cindy.Gunawan@uts.edu.au</u>




Serial passaging in the presence of silver and antibiotic (bioreplicate)


Figure S1. Biological replicates: The development of resistance to NAg, ionic silver and the antibiotic ciprofloxacin in *S. aureus*. (A) Continuous exposure *via* passaging (subculturing) of *S. aureus* in the presence of progressively increasing concentration of NAg (for 50 d), ionic silver (50 d) and ciprofloxacin (30 d), starting at sub-MIC levels of the respective antimicrobials. (B) Post-exposure changes in the MIC of the antimicrobials. The extent of growth (24 h, 37°C, relative to the no antimicrobial control) of the passaged *S. aureus* was assessed in the presence of NAg (1 to 20  $\mu$ g Ag/mL, solid profile), ionic silver (1 to 20  $\mu$ g Ag/mL) and ciprofloxacin (0.13 to 32  $\mu$ g/mL) and compared to those of the wild-type (dotted profiles). For the MIC work, the data point shown is the average of three biological replicates (experiments with independent bacterial inocula; from three isolates in the case of the passaged strains and different antimicrobial preparations) and each biological replicate with three technical replicates, with error bars representing the standard error of measurement (SEM).



Scheme S1. Steps for the determination of MIC increase after the prolonged antimicrobial exposures (passaging) of *S. aureus*. (A) Growth of the passaged strain on agar containing the respective antimicrobial, (B) culturing of the grown colonies in antimicrobial-free liquid medium (3 d sub-culturing), (C) dose-response growth study for 'new' MIC determination of the antimicrobials.



**Figure S2. Biological replicates: NAg/ionic silver cross-resistance in** *S. aureus.* (A) The extent of growth (24 h, 37°C, relative to the no antimicrobial control) of the NAg-passaged strain in the presence of ionic silver (1 to 20  $\mu$ g Ag/mL, solid profile) and (B) the ionic silver-passaged strain in the presence of NAg (1 to 20  $\mu$ g Ag/mL, solid profile) compared to the respective wild-type (dotted) profiles. Each data point is the average of three biological replicates, each with three technical replicates, with the error bars representing the standard error of measurement (SEM).



**Figure S3.** The extent of growth (24 h, 37°C, relative to the no antimicrobial control) of the ciprofloxacin-passaged *S. aureus* in the presence of (**A**) NAg (1 to 20  $\mu$ g Ag/mL, solid profile) and (**B**) ionic silver (1 to 10  $\mu$ g Ag/mL) were compared to the respective wild-type (dotted) profiles. Each data point is the average of three biological replicates, each with three technical replicates, with the error bars representing the standard error of measurement (SEM).

### Silver-induced genomic mutations

The study detected mutations in the NAg- and ionic silver-resistant *S. aureus* using whole genome sequencing. The bacterium developed different gene mutations in response to the NAg 50 d exposure when compared to ionic silver, while there were also mutations in functionally related proteins in response to both the nanoparticle and ionic forms of silver. **Table S1** describes the additional mutations that were detected in the silver resistant mutants. These mutations, unlike those that are presented in the main text, were found in only one of the biological replicates of the prolonged silver exposures. All of these mutations however, like those that are presented earlier, have also been confirmed through PCR amplification and sequencing of the genes (in different bacterial isolates, see Experimental Sections).

| Nucleotide change in gene |                                 |                  |           |           |          | Amino acid change<br>in protein                    |            | Hypothesized defence mechanisms to silver toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|---------------------------|---------------------------------|------------------|-----------|-----------|----------|----------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Gene locus                | <sup>a</sup> Position in genome | Mutation<br>type | Reference | Variation | f<br>(%) | Gene annotation                                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| NAg-resistant strain      |                                 |                  |           |           |          |                                                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| KQ76_06080                | 1,232,347                       | SNV              | G         | Т         | 100      | UDP pyrophosphate synthase<br>uppS                 | Asp195Tyr  | The UppS protein functions as a catalyst for undecaprenyl dipyrophosphate (UPP) biosynthesis, a precursor for lipid II, an important component in the second-half of peptidoglycan synthesis process. <sup>1</sup> The mutation may decrease the UPP levels and lead to less lipid II synthesis, consequently elevating the intermediates from the first-half of the peptidoglycan synthesis process. <sup>2</sup> A study has shown that reduced UppS levels was observed to increase susceptibility to $\beta$ -lactam antibiotics (competitively bind with lipid II), as also observed in this study. <sup>3</sup> |  |
| KQ76_10725                | 2,102,445                       | SNV              | G         | А         | 100      | Phosphoserine phosphatase<br>rsbU                  | Asp134Asn  | The RsbU protein activated $\sigma^B$ , a protein that influences many genes to cope with environmental (e.g. peroxides, UV) and antibacterial stress. <sup>4</sup> The mutation may alter levels of $\sigma^B$ to allow cells to survive in the presence of NAg.                                                                                                                                                                                                                                                                                                                                                     |  |
|                           |                                 |                  |           |           |          | Ionic silver-resist                                | ant strain |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| KQ76_01810                | 386,992                         | SNV              | G         | Т         | 100      | <i>L</i> -cystine uptake protein <i>tcyP</i>       | Met357Ile  | Together with the TcyA protein, the TcyP protein facilitates <i>L</i> -cystine<br>uptake to cytoplasm for the synthesis of <i>L</i> -cysteine, <sup>5</sup> an essential<br>compound to fight off silver-generated ROS. <sup>6–8</sup> Due to the potential for<br>cysteine-mediated oxidative stress, the mutation could be to reduce the<br>increase in cellular cysteine pools already reported during ionic silver<br>exposure. <sup>9</sup>                                                                                                                                                                      |  |
| KQ76_03830                | 788,889                         | SNV              | Α         | G         | 100      | Thioredoxin reductase<br>trxB                      | Tyr133Cys  | The enzyme thioredoxin reductase catalyzes the reduction of thioredoxin to its (reduced) active form to scavenge ROS, <sup>10</sup> generated by silver exposure. <sup>11</sup> The mutation is thought to provide additional cysteine (a change of Tyr to Cys) in the thioredoxin reductase active site, <sup>8</sup> possibly to cope with the Ag <sup>+</sup> binding to the 'original' cysteine in the active site.                                                                                                                                                                                               |  |
| KQ76_00825                | 1,700,650                       | SNV              | G         | С         | 100      | Adenine<br>phosphoribosyltransferase<br><i>apt</i> | MetlIle    | The Apt protein catalyzes the formation of adenine (purine nucleotide) from adenosine monophosphate (AMP). <sup>12</sup> The mutation results in the absence of methionine (Met) in initiation codon that could lead to a very low degree of the Apt protein synthesis, <sup>13</sup> which in turn may alter the energy pools available to support growth in the presence of NAg. <sup>14</sup>                                                                                                                                                                                                                      |  |

## Table S1. Additional point mutations detected in NAg- and ionic silver-resistant S. aureus genome

| KQ76_06710 | 1,354,358 | SNV | Т | G | 100 | Phosphatidylglycerol<br>lysyltransferase<br><i>mprF</i> | Cys380Trp | The enzyme catalyzes the transfer of a lysyl group from L-lysyl-<br>tRNA(Lys) to phosphatidylglycerol to generate the positively-charged<br>lysilphosphatidylgycerol in <i>S. aureus</i> cell membrane. <sup>15</sup> The mutation<br>could lead to an increased net positive charge of the cell envelope, <sup>16,17</sup><br>thereby repelling the Ag <sup>+</sup> ion. <sup>18</sup> A mutation to this gene was found to<br>associate with a reduced resistance to the $\beta$ -lactam oxacillin and<br>methicillin. <sup>19</sup> |
|------------|-----------|-----|---|---|-----|---------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KQ76_10800 | 2,116,579 | SNV | Т | С | 100 | RNA helicase<br>cshA                                    | Ser451Pro | The protein CshA is an ATP-dependent RNA helicase, an enzyme that is involved in RNA metabolism, including in RNA splicing and translation initiation. <sup>20</sup> The mutation is thought to reduce energy usage for RNA metabolism. <sup>20</sup>                                                                                                                                                                                                                                                                                  |
| KQ76_04420 | 903,745   | SNV | С | Т | 100 | CoA-disulfide reductase<br>cdr                          | Gln141*   | The enzyme catalyzes the formation of CoA-disulfide from CoA<br>(coenzyme A) with the expense of the cofactor NAD <sup>+</sup> or NADP <sup>+</sup> . The<br>process is key in the regulation of thiol (sulphur) metabolism to maintain<br>cellular redox balance. <sup>21</sup>                                                                                                                                                                                                                                                       |

<sup>a</sup>In S. aureus ATCC 25923

SNV (single nucleotide variation) denotes substitution-type change of a single nucleotide at a specific position in the genome, f = frequency of the nucleotide changes occurring in a bacterial isolate, \* = stop codon.

Note: Our follow-up RNAseq work supports the likely minor role of several of these gene mutations for NAg resistance (*e.g.* the *uppS* gene, involved in cell wall synthesis of *S. aureus*) and ionic silver resistance (*e.g.* the *tcyP* gene, involved in cysteine metabolism) (unpublished data).

### Table S2. Primers used for confirmation of the gene mutation

|             | Forward primer $(5' \rightarrow 3')$ | Reverse primer $(5' \rightarrow 3')$ | Annealing Tm (°C) | Amplicon size (bp) |
|-------------|--------------------------------------|--------------------------------------|-------------------|--------------------|
| purR        | CGCAAGTGGTGGTGTTACG                  | CACCATTGATAGAGCCACCA                 | 50                | 452                |
| tcyA        | GCAGGGCGTTTTGATGTAAT                 | AGAAACATCTTGACCAAACCA                | 50                | 500                |
| cymR        | GTTTTTGCGCAGGTGGTT                   | AAAAAGAGGGGGCAAGGATGT                | 50                | 249                |
| uppS        | TTCCACTGAAAATTGGTCAAGA               | TCGTCAAAGTCAGGCCATAA                 | 50                | 468                |
| rsbU        | CAATGCTTAAAACAGATATTCCACA            | TCAGTCACACCATCCGTTAAA                | 50                | 505                |
| tcyP        | GCAACGCCGAATGAACTAAT                 | GCATTCACATCACGCTCAAG                 | 50                | 251                |
| <i>trxB</i> | GTATTCCAGGCGGTCAAATG                 | TGAGTCACCACCACCGATAA                 | 52                | 356                |
| apT         | TGCTGCTTCAATCGTACCAC                 | TCGTGAGCAATTTAGGAGGAA                | 50                | 417                |
| mprF        | TTCATTCCGGCTAAAGATGTG                | TGATAATCGAATAACCACGCAAT              | 50                | 605                |
| cshA        | GTCTGCTTCCACCGCTACTC                 | TTCGTCCACCACATCGTAAA                 | 50                | 387                |
| cdr         | CCCTGCACCTACAACCAATA                 | TCATTGGCGAAGTTGTTGAA                 | 52                | 329                |

#### References

- W. Zhu, Y. Zhang, W. Sinko, M.E. Hensler, J. Olson, K.J. Molohon, S. Lindert, R. Cao, K. Li, K. Wang, Y. Wang, Y.-L. Liu, A. Sankovsky, C.A.F. de Oliveira, D.A. Mitchell, V. Nizet, J.A. McCammon, E. Oldfield, *Proc. Natl. Acad. Sci.* 2013, *110*, 123.
- 2. J.J. Pan, L.W. Yang, P.H. Liang, *Biochemistry*. 2000, 39, 13856.
- 3. Y.H. Lee, J.D. Helmann, Antimicrob. Agents Chemother. 2013, 57, 4267.
- 4. J. Pané-Farré, B. Jonas, K. Förstner, S. Engelmann, M. Hecker, *Int. J. Med. Microbiol.* 2006, 296, 237
- 5. O. Soutourina, O. Poupel, J.Y. Coppée, A. Danchin, T. Msadek, I. Martin-Verstraete, *Mol. Microbiol.* 2009, 73, 194.
- 6. F.F. Xu, J.A. Imlay, Appl. Environ. Microbiol. 2012, 78, 3614.
- 7. J.S. McQuillan, A.M. Shaw, Nanotoxicology. 2014, 8, 177.
- 8. X. Liao, F. Yang, H. Li, P.K. So, Z. Yao, W. Xia, H. Sun, Inorg. Chem. 2017, 56, 14823.
- 9. S. Park, J.A. Imlay, J. Bacteriol. 2003, 185, 1942.
- 10. O. Uziel, I. Borovok, R. Schreiber, G. Cohen, Y. Aharonowitz, J. Bacteriol. 2004, 186, 326.
- 11. H.J. Park, J.Y. Kim, J. Kim, J.H. Lee, J.S. Hahn, M.B. Gu, J. Yoon, *Water Res.* 2009, 43, 1027.
- 12. J. Hochstadt-ozer, E.R. Stagtman, J. Biol. Chem. 1971, 246, 5294.
- 13. F. Belinky, I.B. Rogozin, E. V. Koonin, Sci. Rep. 2017, 7, 12422.
- 14. A.S. DeFrancesco, N. Masloboeva, A.K. Syed, A. DeLoughery, N. Bradshaw, G.-W. Li, M.S. Gilmore, S. Walker, R. Losick, *Proc. Natl. Acad. Sci.* 2017, 114, E5969.
- 15. S.J. Yang, N.N. Mishra, A. Rubio, A.S. Bayer, Antimicrob. Agents Chemother. 2013, 57, 5658.
- 16. T. Jones, M.R. Yeaman, G. Sakoulas, S.J. Yang, R.A. Proctor, H.G. Sahl, J. Schrenzel, Y.Q. Xiong, A.S. Bayer, *Antimicrob. Agents Chemother*. 2008, *52*, 269.
- 17. L. Friedman, J.D. Alder, J.A. Silverman, Antimicrob. Agents Chemother. 2006, 50, 2137.
- 18. Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim, *J. Biomed. Mater. Res.* 2000, *52*, 662.
- 19. H. Komatsuzawa, K. Ohta, T. Fujiwara, G.H. Choi, H. Labischinski, M. Sugai, *FEMS Microbiol. Lett.* 2001, 203, 49.
- 20. C. Giraud, S. Hausmann, S. Lemeille, J. Prados, P. Redder, P. Linder, *RNA Biol*. 2015, 12, 658.
- 21. S.B. DelCardayré, J.E. Davies, J. Biol. Chem. 1998, 273, 5752