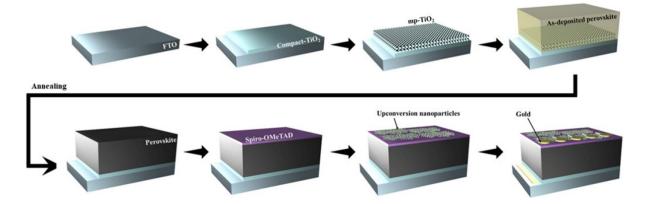
Electronic Supplementary Information


Plasmon Enhanced Up-conversion Nanoparticles in Perovskite Solar Cells for Effective Utilization of Near Infrared Light

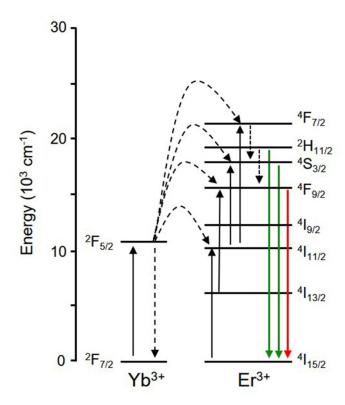
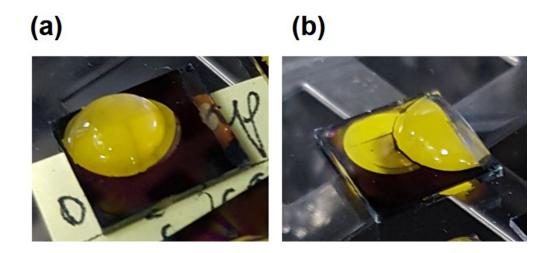
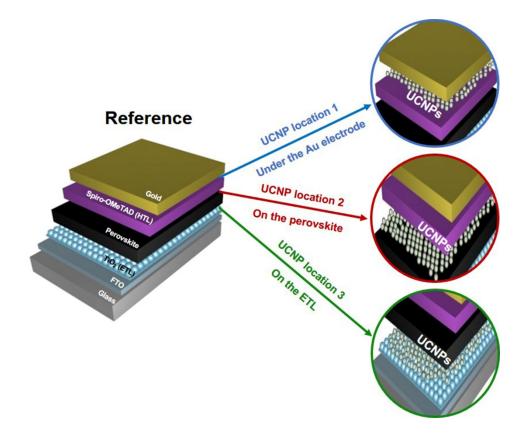
Jiyoon Park,^{‡a} Kihyeun Kim,^{‡b} Eun-Jung Jo,^b Woochul Kim,^a Hyeonghun Kim,^a Ryeri Lee,^a Jun Young Lee,^a Ji Young Jo,^a Min-Gon Kim,^{*b} and Gun Young Jung^{*a}

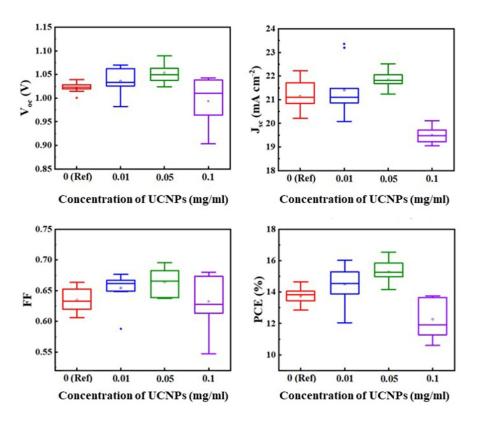
- ^a School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
- ^b Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.

*E-mail: gyjung@gist.ac.kr, mkim@gist.ac.kr

‡These authors equally contributed to this work.

Fig. S1. Fabrication process of UCNPs-incorporated perovskite solar cells (PSCs). The PSCs were fabricated by using a conventional one-step process with anti-solvent method, and the UCNPs were transferred by dry transfer method. The PSC has a structure consisting of fluorine-doped tin oxide (FTO)/compact TiO₂ (c-TiO₂)/mesoporous TiO₂(mp-TiO₂)/perovskite;(MAPbI₃)_{0.85}(FAPbI₃)_{0.15}/spiro-OMeTAD/UCNPs/Au.


Fig. S2. Mechanism of the NaYF₄:Yb³⁺,Er³⁺ for up-conversion luminescence.

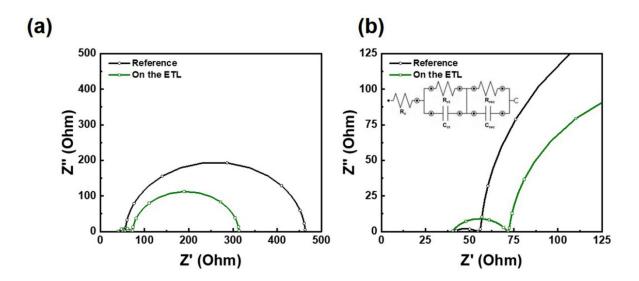

Fig. S3. Photographs showing the decomposed spiro-OMeTAD (HTL)/perovskite film when the UCNPs solution was dropped on the HTL: (a) color change immediately after dropping the UCNPs solution; (b) the perovskite film was rapidly decomposed along the moving trajectory of UCNPs solution.

Fig. S4. Schematic illustration to show the transferred UCNPs at different locations within a perovskite solar cell.

Fig. S5. Statistical distribution of PV parameters *vs.* concentration of UCNPs in solution. PV parameters of reference PSC (without UCNPs) are also included for comparison.

Fig. S6. (a) Comparison of Nyquist plots of two PSCs without UCNPs (reference) *vs.* with UCNPs on ETL. (b) The magnified Nyquist plots in the high-frequency region. The inset represents the equivalent circuit utilized to fit the Nyquist plot.

Table S1. Recombination resistance (R_{rec}) and charge transport resistance (R_{ct}) of PSCs obtained by fitting the Nyquist plots to the equivalent circuit.

	Reference	On the ETL
Recombination resistance, $R_{ m rec}$ (Ω)	408	242
Charge transport resistance, $R_{ m ct}(\Omega)$	19.9	34.4