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1 Equivalence of surface and edge energies
In this section we rationalize the relation between edge and surface energies, σ ≈ λ/d2D. The relation would be acceptable
simply by remarking that the edge of a monolayer has thickness d2D and thus costs σd2D per unit length, but this remark
contains subtle caveats that can be avoided by the following derivation.

Let Es(a,b,c) be the energy of a rectangular slab with sides a,b and height c. Cutting the slab in half trough route (1)
(Fig. S1a) gives

Es(a,b,c) = 2σbc+2Es(a/2,b,c), (1)

where σ is the surface energy. Consider then the successive peeling, cutting, and reassembling of our slab trough another route
(2) (Fig. S1a). Following this second route gives

Es(a,b,c) = Ep(a,b,c)+NL2λb−2Ep(a/2,b,c)+2Es(a/2,b,c), (2)

where λ is the edge energy and Ep is the energy required to peel the slab into NL monolayers. For large slabs Ep(a,b,c) ≈
2Ep(a/2,b,c) and for close packed structures NL ≈ c/d2D, where d2D is the 2D bond length. Therefore, combining equations (1)
and (2) and assuming isotropy gives the relation σ ≈ λ/d2D, which holds reasonably well for all metals (Fig. S1b).

Figure S1 a) Sketch of the scheme to connect edge and surface energies. b) Experimental surface energy as a function of edge energy divided
by the 2D bond length for 36 metals. The edge energies were adopted from Ref. 1.

2 Computational methods

We used density functional theory (DFT) as implemented in the GPAW-code2,3 with Perdew, Burke, and Ernzerhof (PBE) exhange
and correlation (XC) functional4 in all calculations. While PBE functional is not the most accurate XC approximation, it is non-
empirical, has been used for multiple different types of systems and thus enables broad comparison of our calculations, and
is known to reproduce trends, which anyhow represent the focus of our simulations. While van der Waals interactions are
important for adsorption on top of graphene, the general trends we establish have sufficient accuracy without resorting to a
non-local van der Waals XC functional.

The adsorption, interface, and carbide formation energies were calculated in the plane-wave mode using computational
parameters similar to our previous work5. The cutoff energy was 800 eV and all calculations were spin polarized. The zigzag-
ribbon systems for atom adsorption (Fig. S2b) used 1×4×1 Monkhorst-Pack k-point sampling6,7 while rest of the ribbon systems
(Fig. S2a,c,d) used 1×12×1 sampling. The carbide systems had 12×12×1 sampling. A vacuum of 5 Å separated atoms from
the non-periodic unit cell edges. The Cu clusters on nanoporous graphene were calculated using GPAW’s LCAO mode with dzp
basis8. The k-space was sampled in the Γ-point and all calculations were spin compensated.

The molecular dynamics simulation used a 2 fs time step and a Langevin thermostat set to 300 K with a friction parameter of
0.01. Simulation started from a relaxed structure and was followed by a 2 ps warm-up to 300 K.
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Figure S2 Schematics of the simulated structures. Single atom adsorption on a) bridge (left) and hollow (right) sites of armchair graphene and
b) top (left) and hollow (right) sites of zigzag graphene. c) Metal-armchair graphene -interface with alignment of bridge (left) and hollow (right)
sites. d) Metal-zigzag graphene -interface with alignment of top (left) and hollow (right) sites. Dashed lines indicate the computational cells.

3 Metal atoms adsorption on graphene edges
We calculated the adsorption energies of 45 metals on hollow and bridge sites of armchair graphene ribbon (Fig. S2a) and
compared them to the on-top adsorption (above graphene) energies of Ref.9. The adsorption energies were calculated by
relaxing the metal-graphene distance while keeping the ribbon geometry fixed to C-C bond length of 1.42 Å. While the adsorption
energies above graphene range from 0 to −2 eV9, the adsorption energies on the edge sites range from −1 to −7 eV (Figs. S3a
and S3b), which shows that the edge sites are preferred over the top sites. Therefore, metal atoms are thermodynamically driven
to migrate towards the edges of graphene nanopores. Moreover, the adsorption energies of armchair graphene edge are closely
correlated with the adsorption energies on zigzag graphene edge (Fig. S3c).

A
d
so

rp
ti

on
en

er
gy

(e
V

)

a)

b)

bridge

hollow

c)

Figure S3 Metal atom adsorption energies at various sites of armchair and zigzag edges of graphene. a) Adsorption at armchair bridge site.
b) Adsorption at armchair hollow site. c) Adsorption at zigzag top site compared with armchair bridge site (black spheres) and adsorption at
zigzag hollow site compared with adsorption at armchair hollow site (red squares). Regarding adsorption energy, zigzag top and armchair
bridge as well as zigzag hollow and armchair hollow sites are nearly equivalent.

4 Interface energies for selected small-strain metals
The metal-graphene interface formations were modeled by ribbon models consisting of two alignments for both armchair and
zigzag graphene edges (Figs. S2c and S2d). The metal-graphene distance was relaxed while the metal and graphene ribbons
were fixed to ideal geometries. The interface energies range from 0.6 to 1.5 eV/Å and they are always larger than edge ener-
gies (Figs. S4a-d). For all metals Bader charge analysis reveals modest charge transfer from metal ribbon to graphene ribbon
(Figs. S4e-h).
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Figure S4 Metal-graphene interface energies for different configurations (Figs. S2c and S2d): a) armchair hollow, b) armchair bridge, c) zigzag
hollow, and d) zigzag top sites. Bader charger per metal atom for different metal-graphene interface configurations (Figs. S2c and S2d): e)
armchair hollow, f) armchair bridge, g) zigzag hollow, and h) zigzag top sites.

5 Metal carbides

Motivated by previous global optimization studies10, metal carbides were considered in three geometries: M1C1 (Fig. S5a),
M2C1 (Fig. S5b), and another, C-dimer variant of M1C1 (Fig. S5c). The geometries and unit cells were optimized to maximum
force of 0.005 eV/Å11,12. The geometries shown in Fig. S5 are representative; for some metals the unit cells were distorted.
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Figure S5 Carbide formation energies as defined in Eq. (7) for three different geometries shown in the left hand panels: a) M1C1, b) M2C1, and
c) another M1C1 geometry. Negative (blue) value means an exothermic carbide formation process.

6 Summative figure of merit of 2D patch stability
The purpose of the figure of merit is to consider several competing viewpoints simultaneously in order to rank the metals to
identify the most stable 2D patches. The merit considered the following viewpoints:

1. Intrinsic relative stability of the 2D metal, including two viewpoints:
i) the ∆-parameters from Eq. (6) (Fig. 2c; smaller is better) and
ii) the bending moduli from Fig. 10 of Ref.5 averaged over square and hexagonal lattices (larger is better).

2. Commensurability and the resulting strain energy at the interface (Fig. S6; smaller is better).

3. Unfavorable formation of carbides (Fig. 3b; larger is better)

4. Chemical binding strength at the interface (Fig. 3a; larger is better).

The figure of merit was then calculated as the root-mean-square ranking across all the viewpoints. We experimented with
different schemes of constructing the figure of merit, but Cu was invariably the best candidate; the ranking of other prominent
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metals varied, though not excessively. We calculated also template-independent figure of merit using only the intrinsic 2D
stability (∆-parameter) and bending moduli. In this generic case the best candidates are are Au, Be, Pt, and Cu (Fig. S7).
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Figure S6 Strain energy in metals due to lattice mismatch with respect to graphene. The energy is calculated as Es =
√

3Bd2
2Dε2, where B is

the 2D bulk modulus (numbers taken from Table I of Ref. 5) and ε is the lattice strain with respect to graphene (Fig. 3c).

Figure S7 Template-independent figure of merit, accounting only intrinsic 2D stability and the magnitudes of bending moduli.

7 DFT calculations of finite Cu patches
The graphene nanopores were made either spherical or hexagonal, depending on the number of Cu atoms. Two C atoms were
removed for each added Cu atom. The 3D clusters were optimized starting from the cluster structures given by the Lennard-
Jones potential. For consistency, the pore structures for given N were the same in all three cases. Fig. S8 shows 10 examples of
the optimized structures.

N=23 N=37 N=50 N=145N=114N=102N=91N=81N=71N=61

Figure S8 Examples of optimized Cu clusters in graphene pores. The top panels show on-top -adsorbed 3D clusters, middle panels pore edge
-adsorbed 3D clusters, and bottom panels 2D patches inside pores.
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