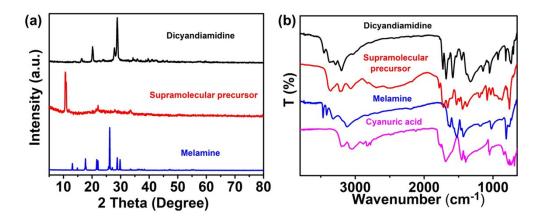
Supplementary Information

Hollow porous prismatic graphitic carbon nitride with nitrogen vacancies and oxygen

doping: a high-performance visible light-driven catalyst for nitrogen fixation

Ting Huang^{a,b}, Shugang Pan^a, Lingling Shi^a, Aiping Yu^b, Xin Wang^{a,*} and Yongsheng Fu^{a,*}

^a Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing


University of Science and Technology, Nanjing 210094, China

^b Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1,

Canada

* Corresponding authors

E-mail addresses: fuyongsheng0925@163.com, fuyongsheng@njust.edu.cn (Y. S. Fu), wangx@njust.edu.cn (X. Wang)

Fig. S1 (a) X-ray diffraction (XRD) of the dicyandiamidine, supramolecular precursor, melamine and cyanuric acid. (b) FT-IR spectra of the dicyandiamidine, melamine and supramolecular precursor.

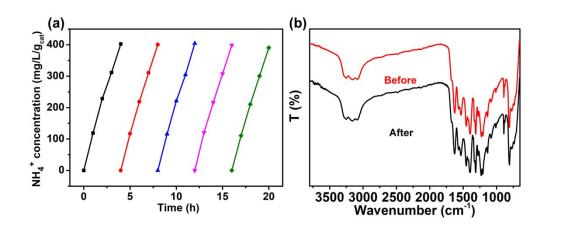


Fig. S2 (a) The cycling testing of the photocatalytic activity over 20 h for Nv&Od-CN under the visible light irradiation ($\lambda > 420$ nm), (b) FI-IR spectra of Nv&Od-CN before and after reaction.

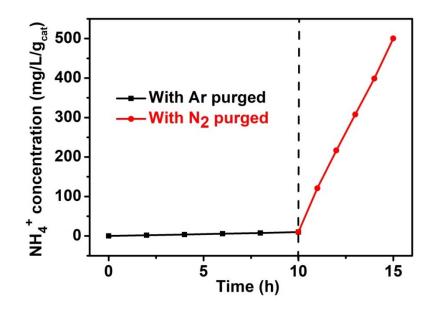


Fig. S3 Photocatalytic nitrogen fixation for Nv&Od-CN under the visible light irradiation ($\lambda > 420$ nm) with Ar purged or N₂ purged.

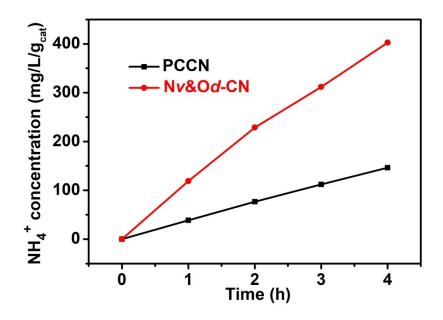


Fig. S4 Photocatalytic nitrogen fixation for PCCN and Nv&Od-CN under the visible light irradiation ($\lambda > 420$ nm).

The porous crimped graphitic carbon nitride (PCCN) with a large specific surface area

(146.14 m² g⁻¹) was prepared based on our previous work (*Appl. Surf. Sci. 2019, 480:* 888–895) and was used as the contrast sample, which has neither nitrogen vacancies nor oxygen doping for the PCCN. The photocatalytic nitrogen fixation performances over the Nv&Od-CN and PCCN have been carried out under visible-light irradiation at room temperature and the results are shown in Fig. S4. It is noteworthy that although both the PCCN and Nv&Od-CN possess large specific surface area, the nitrogen fixation rate of PCCN is obviously lower than that of Nv&Od-CN, indicating that the change of specific surface area is not a mainly factor for improving photocatalytic nitrogen fixation performance.

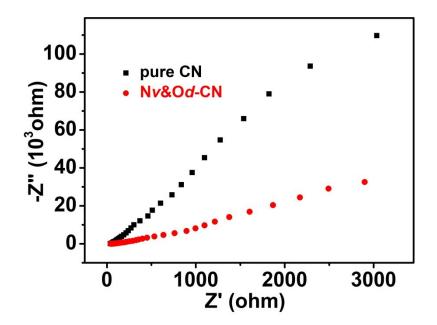


Fig. S5 EIS Nyquist plots of the pure CN and Nv&Od-CN.

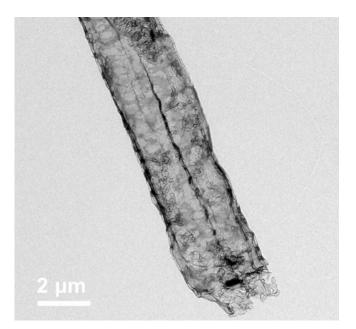


Fig. S6 TEM images of CN1.

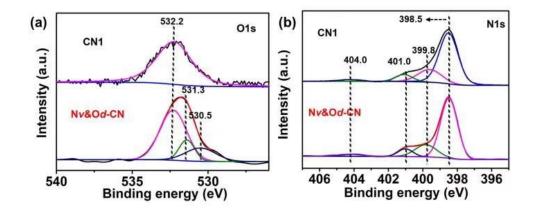


Fig. S7 (a) XPS high resolution O 1s and (b) N 1s spectra for CN1 and Nv&Od-CN.

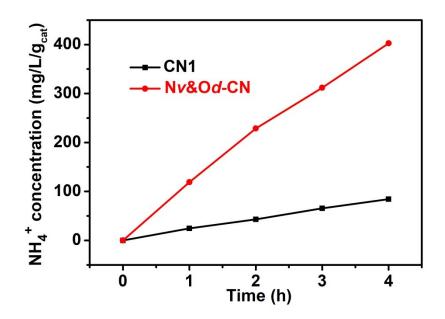


Fig. S8 Photocatalytic nitrogen fixation for CN1 and Nv&Od-CN under the visible light irradiation ($\lambda > 420$ nm).

Samples	N (wt.%)	C (wt.%)	H (wt.%)	O (wt.%)
Pure CN	55.31	42.18	2.37	0.17
Nv&Od-CN	51.76	41.08	1.93	5.23

Table S1 Elemental analysis of the pure CN and Nv&Od-CN.

Table S2 The peak areas of N species of the pure CN and Nv&Od-CN.

Samples	N _{2C} area	N _{3C} area	N _{NHx} area
Pure CN	35713	11702	3423
Nv&Od-CN	33048	8553	3697

References

1 T. Huang, Y.S. Fu, Q. Peng, C.Y. Yu, J.W. Zhu, A.P. Yu and X. Wang, *Appl. Surf. Sci.*, 2019, **480**, 888–895.