Supplementary Information

Ideal two-dimensional solid electrolytes for fast ions transport: metal trihalides MX₃ with intrinsic atomic pores

Maokun Wu,^a Pan Liu,^a Luyan Li,^b Hong Dong,^a Yahui Cheng,^a Haijun Chen,^a

Weichao Wang,^a Hui Liu,^a FengLu,^{a,*} Wei-Hua Wang,^{a,*} Kyeongjae Cho^{c,*}

^aDepartment of Electronic Science and Engineering, and Key Laboratory of Photo-Electronic Thin

Film Device and Technology of Tianjin, Nankai University, Tianjin 300350, P. R. China

^bSchool of Science, Shandong Jianzhu University, Jinan 250101, China

^cDepartment of Materials Science and Engineering, The University of Texas at Dallas, Richardson,

TX 75080, USA

Email addresses: whwangnk@nankai.edu.cn; lufeng@nankai.edu.cn; kjcho@utdallas.edu

S1. The optimized structural parameters of monolayer MX₃-ion systems

Table S1 The optimized structural parameters of monolayer MX₃-ion systems. The pore size of monolayer MX₃ (*r* in Å) and the vertical distance from the metal ion to the M atoms plane (*d* in Å). d=0.0 Å represents that the ion is located within the M atoms plane.

	ScCl ₃		ScBr ₃		AsI ₃		ScI_3	
	$r(\text{\AA})$	d (Å)	r (Å)	d (Å)	r (Å)	d (Å)	r (Å)	<i>d (</i> Å)
Pristine MX ₃	4.72	/	4.91	/	5.18	/	5.26	/
MX ₃ -Li ⁺	4.46	0.00	4.69	0.00	5.05	0.00	5.09	0.00
MX_3 - Na^+	4.71	2.81	4.97	2.90	5.28	0.00	5.40	2.64
MX_3-K^+	4.72	3.59	4.93	3.77	5.30	3.96	5.32	3.98
MX_3-Mg^{2+}	4.28	0.00	4.52	0.00	4.89	0.00	4.95	0.00
MX_3 - Ca^{2+}	4.66	2.82	4.96	2.78	5.22	0.00	5.26	0.00
	YBr ₃		SbI ₃		YI ₃		BiI ₃	
	r (Å)	$d(\mathbf{\hat{A}})$	r (Å)	$d(\lambda)$		$d(\mathbf{\hat{A}})$	(Å)	$d(\text{\AA})$
Drictino MV	()	u (11)	7 (A)	<i>u</i> (A)	$r(\mathbf{A})$	u (11)	$r(\mathbf{A})$	u (11)
Flistine MA ₃	5.29	/	5.42	/ (A)	5.51	/	5.53	/
MX ₃ -Li ⁺	5.29 4.90	/ 0.00	5.42 5.11	/ 0.00	5.51 5.20	/ 0.00	F(A) 5.53 5.18	/ 0.00
MX ₃ -Li ⁺ MX ₃ -Na ⁺	5.29 4.90 5.34	/ 0.00 0.00	5.42 5.11 5.39	/ 0.00 0.00	r (A) 5.51 5.20 5.45	/ 0.00 0.00	r (A) 5.53 5.18 5.44	/ 0.00 0.00
MX ₃ -Li ⁺ MX ₃ -Na ⁺ MX ₃ -K ⁺	5.29 4.90 5.34 5.31	/ 0.00 0.00 3.61	5.42 5.11 5.39 5.61	/ 0.00 0.00 3.80	5.51 5.20 5.45 5.55	/ 0.00 0.00 3.87	P (A) 5.53 5.18 5.44 5.70	/ 0.00 0.00 3.76
MX_3-Li^+ MX_3-Na^+ MX_3-K^+ MX_3-Mg^{2+}	5.29 4.90 5.34 5.31 4.61	/ 0.00 0.00 3.61 0.00	5.42 5.11 5.39 5.61 4.87	/ 0.00 0.00 3.80 0.00	P(A) 5.51 5.20 5.45 5.55 4.96	/ 0.00 0.00 3.87 0.00	r (A) 5.53 5.18 5.44 5.70 4.90	/ 0.00 0.00 3.76 0.00

S2. Diffusion time of ions travelling through monolayer MX₃

Table S2 Diffusion time $\tau(ion)$ (s) of metal ions through monolayer MX₃.

	ScCl ₃	ScBr ₃	AsI ₃	ScI ₃	YBr ₃	SbI ₃	YI ₃	BiI ₃
τ(Li ⁺)	4.67×10-5	1.98×10-3	7.58×10-5	3.69×10-4	5.92×10-6	5.05×10-6	3.92×10-5	8.06×10-6
τ(Na ⁺)	4.85×10 ⁻¹¹	7.96×10-9	1.88×10-5	4.42×10-7	2.62×10-6	8.20×10 ⁻⁵	9.90×10 ⁻⁵	1.46×10 ⁻⁴
$\tau(K^+)$	1.28×10 ²	1.16×10 ⁻⁴	1.40×10-9	3.73×10 ⁻⁸	3.09×10 ⁻¹⁰	9.52×10 ⁻¹⁰	3.48×10 ⁻¹⁰	3.40×10-9
$\tau(Mg^{2+})$	5.62×1010	1.02×10^{12}	2.67×10 ⁰	1.04×10^{11}	1.17×10^{11}	9.62×10 ⁰	2.14×1010	1.67×10 ⁴
$\tau(\mathrm{Ca}^{2+})$	1.07×10-3	5.59×10 ⁻²	1.60×10 ⁴	2.19×109	5.99×10 ⁷	8.93×10 ⁵	9.62×10 ¹⁰	9.01×10 ⁸

S3. Phonon spectra of MX₃-Li⁺ complexes

Fig. S1 (Color online) Phonon dispersions for MX₃-Li⁺ systems along high symmetric directions.

Fig. S2 (Color online) Band structures of spin-up and spin-down channels for (a) bulk $ScCl_3$, (b) monolayer $ScCl_3$, and (c) monolayer $ScCl_3$ -Li⁺ systems. The Fermi level marked by the horizontal dashed lines is set as a value of zero.

The non-magnetic state for all pristine MX_3 and MX_3 -ion complexes has been converged through initial setting up spin-polarized state. The band structures of bulk ScCl₃, monolayer ScCl₃ and ScCl₃-Li⁺ complex as examples are displayed in Fig. S2, where the spin up and spin down channels are symmetric. It is also consistent with the literature reports on bulk ScCl₃.¹ In addition, the non-magnetic states and insulating character of MX_3 are kept intact during the ions transport because empty or fully occupation of M-3*d* (4*d*) orbitals is almost unchanged.

S5. Electronic states of ions travelling through monolayer MX₃ with HSE06 functional

Fig. S3 (Color online) Density of states (DOS) and partial DOS (PDOS) of ScCl₃-ion complexes under the initial state (IS) and transition state (TS) with HSE06 method. (a) $ScCl_3-Li^+/Mg^{2+}-TS$, (b) $ScCl_3-Na^+$, (c) $ScCl_3-K^+$, (d) $ScCl_3-Ca^{2+}$. The Fermi level is set to be 0 eV.

S6. Band structures of MX₃-ion systems with PBE and PBE+SOC methods

Fig. S4 (Color online) The band structures of (a) ScCl₃-ion and (b) BiI₃-ion systems with PBE and PBE+SOC methods. The Fermi level marked by the horizontal dashed lines is set as 0.

S7. The relative energy curves of ions diffusion in multilayered ScCl₃

About the ion diffusion in multilayered ScCl₃ in Fig. S5, the diffusion pathway is divided into the step 1 of intralayer diffusion and step 2 of interlayer diffusion. For step 1 transport, the ion in initial state is not trapped within the Sc atoms plane due to the interaction between adjacent layers. For Li⁺ and Mg²⁺ with smaller ionic radius, E_a of Li⁺ and Mg²⁺ transporting through multilayered ScCl₃ are reduced to ~0.12 eV and ~0.55 eV in step 1 relative to the monolayer transport. In contrast, Na⁺ and Ca²⁺ show enhanced E_a of ~0.36 eV and 0.81 eV through multilayered ScCl₃. In addition, it is still difficult for K⁺ to pass through ScCl₃ with E_a of ~0.91 eV. For step 2 transport, the energy barrier curves behave like volcanos, and the E_a increases with the ion mass.

Fig. S5 (Color online) The relative energy curves of ions diffusion in multilayered ScCl₃. Left side and right side correspond to the step 1 of intralayer diffusion and the step 2 of interlayer diffusion.

	ScCl ₃	ScBr ₃	AsI ₃	ScI ₃	YBr ₃	SbI ₃	YI ₃	BiI ₃
$\tau(Li^+)$	1.61×10 ⁻¹⁰	1.34×10-9	2.27×10-8	1.37×10-8	2.98×10-11	9.08×10-11	5.09×10 ⁻¹⁰	1.36×10-9
$\tau(Na^+)$	2.44×10-7	5.81×10-7	8.06×10-6	4.02×10 ⁻⁶	3.07×10 ⁻⁸	4.03×10 ⁻⁸	1.10×10 ⁻⁷	2.48×10-7
$\tau(K^+)$	1.87×10 ²	2.82×10-4	3.36×10-5	2.99×10-5	9.38×10-7	6.78×10-8	8.20×10-7	2.53×10-6
$\tau(Mg^{2+})$	2.13×10-4	2.82×10-4	1.95×10-3	1.02×10-2	3.32×10-7	2.11×10-6	7.19×10-6	2.94×10-6
$\tau(\mathrm{Ca}^{2+})$	3.65×10°	4.27×10-2	0.43×10°	0.54×10 ⁰	5.94×10-4	9.76×10-5	1.14×10-2	3.57×10-3

S8. Diffusion time of ions transport through one layer of multilayered MX₃ **Table S3** Diffusion time τ(ion) (in s) of metal ions travelling through one layer of multilayered MX₃.

S9. Electronic structures of multilayered MX₃-ion complexes during ions diffusion process

Fig. S6 (Color online) Density of states (DOS) of pristine $ScCl_3$ and Li^+/Ca^{2+} diffusion in bulk $ScCl_3$ in initial state (IS) and transition state (TS) with PBE functional. (a) $ScCl_3-Li^+$ (b) $ScCl_3-Ca^{2+}$. The Fermi level is set to be 0 eV.

The insulating character of multilayered MX₃ is well reserved during the ions diffusion process as shown in Fig. S6. In order to look into the influence of the ions diffusion on the band edges positions, the local density of states (LDOS) of multilayered ScCl₃-Li⁺/Ca²⁺ systems at the initial state (IS) and final state (FS) during the intralayer diffusion step are displayed in Fig. S7. In fact, Li⁺/Ca²⁺ is located within ScCl₃ layer-3rd and layer-1st in the IS considering the periodic boundary conditions. It is found that the band edges of ScCl₃ layer-3rd and layer-1st shift down and those of layer-2nd are retained, which is demonstrated in Fig. S7(b) and Fig. S7(c). In the TS, the Li⁺/Ca²⁺ is within the pore in ScCl₃ layer-3rd. The band edges of the layer-3rd shift down and those of the other two layers are intact in Fig. S7(e) and Fig. S7(f). The band edges shift is due to the attraction interaction between the Li⁺/Ca²⁺ and the electrons from the nearest ScCl₃ layer. Nevertheless, it is noted that no carriers transfer among ScCl₃ layers occurs and the insulating behavior is not affected by the ions travelling.

Fig. S7 (Color online) The schematic structure of IS in (a) and that of TS in (d) for intralayer diffusion of Li⁺, Ca²⁺ through multilayered ScCl₃. The local density of states (LDOS) projected at different layers for ScCl₃-Li⁺-IS in (b), ScCl₃-Ca²⁺-IS in (c), ScCl₃-Li⁺-TS in (e), and ScCl₃-Ca²⁺-TS in (f). The Fermi level is set as 0 eV.

S10. Li⁺ ions transport affected by ions density

Fig. S8 (Color online) The energy barriers (E_a in eV) in (a) and diffusion time $\tau(ion)$ (s) in (b) of Li⁺ transporting through one layer of MX₃ when the ions density increases. The inset shows the top view of schematic structures. The red balls represent Li⁺ ions.

Since the ions transport through 2D MX₃ might be affected by the increased ions density, here the Li⁺ transport performance through few layers MX₃ has been examined when the ions density increases, e.g. one Li⁺ per atomic pore. As shown in Fig. S8, within one layer of ScCl₃ and ScBr₃ possessing small pore size, the diffusion energy barrier (E_a) of Li⁺ actually increases with the increase of Li⁺ density. The present increased E_a , 0.51 eV and 0.39 eV in Fig. S8(a), corresponds to the diffusing time of 0.36 *ms* and 357 *ns*. In contrast, E_a is still small in the range of 0.17 eV-0.33 eV for Li⁺ transporting through one layer of AsI₃, ScI₃, YBr₃, SbI₃, YI₃ and BiI₃ with large pore size. Consequently, the fast transport time through one layer of MX₃ (0.58 *ns*, 1.41 *ns*, 51.02 *ns*, 0.28 *ns*, 2.05 *ns* and 0.19 *ns*) is well preserved in these systems.

S11. Stability of Li_xMX₃ with the increase of Li⁺ ions density

Fig. S9 (Color online) (a) Compositional phase diagram of Li-Sc-Cl. The black dots represent the stable phases. The red dot denotes $Li_{0.5}ScCl_3$. The dashed line indicates the ScCl₃-Li compositional space. (b) Formation energy difference between Li_xScCl_3 and the mixed phase with the increase of the ions density.

The chemical formula of 2D solid electrolytes in this work could be treated as Li_xMX_3 after the external Li⁺ ions are introduced. In the following, the stability of Li_xMX_3 dependent on ions density is considered. Here Li-Sc-Cl is taken as an example and its phase stability is studied by constructing compositional phase diagram in Fig. S9(a).^{1,2} At *x*=0, the pristine ScCl₃ is thermodynamically stable. The high ions density phase under one Li⁺ per pore in one layer, corresponding to the chemical formula $Li_{0.5}ScCl_3$, is located within the triangle connected by LiCl, ScCl₃ and Sc₅Cl₈. It implies that $Li_{0.5}ScCl_3$ possibly decomposes into mixed phase including LiCl, ScCl₃ and Sc₅Cl₈. Nonetheless, the formation energy difference between Li_xScCl_3 and the mixed phase, $\Delta E_F = E_F(Li_xScCl_3) - E_F(mixed phase)$, is small in the range of ~0.10 eV-0.45 eV in Fig. S9(b). However, the decomposition reaction is not only determined by the thermodynamical stability, but also by the kinetics of chemical reactions. For $Li_{0.5}ScCl_3$, ScCl₃ is the host and the Li⁺ ions are regarded as dopants. The prerequisite to decompose Li_xScCl_3 and generate LiCl is breaking the bond of Sc-Cl. Referring to bond dissociation energy (BDE) data, it is as large as ~3.45 eV for Sc-Cl.³ Besides, the large BDEs of Sc-Br (~4.62 eV), Y-Br (~5.01 eV), Y-I (~4.40 eV), and Bi-I (~1.94 eV) also demonstrate that it is hard to break M-X bond in these 2D MX₃ solid electrolytes.³ Combined with above discussions, it is not easy to form LiX or NaX in Li_xMX₃ or Na_xMX₃ due to large kinetic barriers involving bond breaking for the necessary reactions. Similarly, the chemical stability of MX₃ contacting with Li metal electrode is characterized by decomposition reaction energy (ΔE_D) and kinetic reaction barrier. The ΔE_D of ScCl₃, ScBr₃, ScI₃, YBr₃ and YI₃ is in the range

of -0.41 eV to -0.68 eV, which is much smaller than the currently used solid electrolytes, e.g., LGPS (-1.25 eV) and Li₃PS₄ (-1.42 eV).^{4,5} Considering the large kinetic barriers in the necessary reactions to break bonds of M-X, ScCl₃, ScBr₃, ScI₃, YBr₃ and YI₃ as solid electrolytes contacting with Li metal would be stable.

References

- A. Jain, G. Hautier, C. J. Moore, S. P. Ong, C. C. Fischer, T. Mueller, K. A. Persson and G. Ceder, *Comput. Mater. Sci.*, 2011, 50, 2295-2310.
- 2. S. P. Ong, L. Wang, B. Kang and G. Ceder, Chem. Mater. 2008, 20, 1798-1807.
- 3. Y. R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC Press, 2007.
- 4. Y. Zhu, X. He and Y. Mo, ACS Appl. Mater. Interfaces, 2015, 7, 23685-23693.
- 5. Y. Zhu, X. He and Y. Mo, J. Mater. Chem. A, 2016, 4, 3253-3266.