Supporting Information

Figure S1 XRD profile of carbonaceous microspheres with uniformly embedded metal ions obtained after hydrothermal treatment (NMC-CS).

Figure S2 Pore-size distribution curve of (a) NMC-CS, and (b) NMCO-HS.

Figure S3 SEM image of carbonaceous microspheres with uniformly embedded metal ions obtained after hydrothermal treatment.

Figure S4 SEM image of pure carbon spheres.

Figure S5 Cyclic voltammetry of MNC-O HS500 based MIBs at the scan rate of 0.5 mVs⁻¹.

Figure S6 Electrochemical characterizations of MNC-O HS500 based MIBs: (a) Rate performance, (b) Charging-discharging profiles at different current rates (20-

1000mAg⁻¹), (c) Cycle stability, and (d) 1^{st} , 2^{nd} , and 5^{th} charge-discharge profiles at $20mAg^{-1}$.

Figure S7 1st and 2nd charge-discharge profiles of MNC-O HS500 based MLIBs at the current density of 50mAg⁻¹.

Figure S8 Electrochemical characterizations of MNC-O HS000 based MLIBs: (a) Rate performance, (b) Charging-discharging profiles at different current rates (50-1000mAg⁻¹), (c) Cycle stability at 50mAg⁻¹.

Figure S9 Surface morphology of magnesium anode after 100 cycles in 0.4APC-1.0LiCl hybrid electrolytes.

Electrodes	Lithium	Magnesium
	(µg/L)	(µg/L)
Pristine	008.675	2745.057
Discharged (0.05V)	912.561	6734.681
Charged (2.0V)	203.173	4245.116

 Table S1 Inductively Coupled Plasma (ICP) mass spectrometry results

Calculation of Energy and Power Densities:

The power density (**P**) was calculated using Equation 1 given below.

$$P = U * I \tag{1}$$

Where U is average working voltage of battery and I is applied current. Whereas, energy density E was calculated using average working voltage (U), specific capacity (C) based on the total mass of the active materials (m) using Equation 2 given below.

$$E = \frac{U * C}{m}$$
(2)