## **SUPPORTING INFORMATION**

## Mechanically tunable exchange coupling of Co/CoO bilayers on flexible muscovite substrate

Thai Duy Ha<sup>a,b</sup>, Min Yen<sup>c</sup>, Yu-Hong Lai<sup>c</sup>, Chang-Yang Kuo<sup>b,d</sup>, Chien-Te Chen<sup>d</sup>, Arata Tanaka<sup>e</sup>, Li-Zai Tsai<sup>f</sup>, Yi-Feng Zhao<sup>g</sup>, Chun-Gang Duan<sup>g</sup>, Shang-Fan Lee<sup>f</sup>, Chun-Fu Chang<sup>b</sup>, Jenh-Yih Juang<sup>\*a</sup>, Ying-Hao Chu<sup>\*a,c,f</sup>

<sup>b.</sup> Max-Planck Institute for Chemical Physics of Solids, Nöthnitzer Strabe 40, Dresden 01187, Germany

<sup>d.</sup>National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan

**Figure S1.** Temperature and pressure dependence of oxide-MBE deposition (a) XPS and (b) XRD spectra of films grown in varied oxygen pressures at 260 °C; (c) XPS and (d) XRD spectra of films grown at varied temperatures in oxygen pressure of 10<sup>-6</sup> mbar.



<sup>&</sup>lt;sup>a.</sup> Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan

<sup>&</sup>lt;sup>c</sup> Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan

e. Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530, Japan

<sup>&</sup>lt;sup>f.</sup> Insitute of Physics, Academia Sinica, Taipei 11529, Taiwan

<sup>&</sup>lt;sup>g.</sup> Department of Electronic Engineering, East China Normal University, Shanghai, China

<sup>\*</sup>Emails: jyjuang@cc.nctu.edu.tw; and yhchu@g2.nctu.edu.tw

Figure S2. The quality of CoO/mica films by checking the rocking-curve (a) CoO(111)/mica; (b) CoO(100)/mica



Figure S3. The Raman spectra of CoO films with/without bending.

The Raman spectra of (a) CoO (111); and (b) CoO (100) films on mica substrate were collected during bending-out with various stages. The radius was changed from 12.5 mm to 3.5 mm.



**Figure S4.** Temperature and thickness dependence of exchange coupling in Co/CoO (111). M-H loops at 50 K, 200 K and 300K of: (a)  $Co_{15nm}/CoO_{20nm}$ , (b)  $Co_{5nm}/CoO_{30nm}$ , and (c)  $Co_{5nm}/CoO_{20nm}$ ; (d) Extracted  $H_{EB}$ .



**Figure S5.** M-H loops of Co/CoO (100) film at different temperatures, different bending radii. (a) Illustration of the bending tests: samples were measured when non-bended, bended-in, bended-out and released; (b)-(f) M-H loops at different temperatures with varied bending states: no bend, bend in with radius of 3 mm, bend out with radius of 3 mm, bend in with radius of 2 mm, bend in with radius of 2 mm, respectively.



**Figure S6.** M-H loops of Co/CoO(111) film at different temperatures, different bending radii. (a)-(c) M-H loops at different temperatures with varied bending states: no bend, bend in with radius of 3 mm, bend out with radius of 3 mm, respectively.



**Figure S7.** Schematics of AMR measurements (a) Illustration of measurement setup: samples were bended by a cylinder, the applied field was perpendicular to the excitation current; (b) the geometry of measurements: the excitation current was along y-axis, samples were rotated along x-axis, and applied field was along z-axis.



**Figure S8.** (a) Schematics of conventional epitaxy and vdW epitaxy; (b) RHEED patterns of mica and CoO(111) film; (c) Real-time monitoring RHEED intensity of the growth; (d) Thickness dependence of XAS for CoO(111) films on mica, in comparisons with CoO bulk.



## **Computational details**

First-principles calculations were carried out with the Vienna *ab initio* Simulation Package  $(VASP)^1$  by using the projector-augmented wave (PAW) method<sup>2</sup> and the generalized gradient approximation(GGA). The exchange-correlation potential is adopted in the PBE<sup>3</sup> (Perdew-Burke-Ernzerh) form of GGA+ $U^4$  method with U=7.1eV and J=1eV for cobalt 3*d* electrons. Both structural relaxation and self-consistent calculations were carried out with the tetrahedral method with Blöchl corrections<sup>5</sup>, and the energy cut-off is set to 500eV. We fully optimize each ionic position until the residual forces converged less than 0.001 eV/Å and self-consistent convergence for electronic energy is  $10^{-6}$  eV. A  $3 \times 3 \times 3$  and  $7 \times 7 \times 2$  Monkhorst-Pack *k*-point mesh are adopted for CoO (100) and CoO (111) calculations, respectively.

The calculated lattice constant of 4.261 Å is very close to experimental lattice parameter. We use a  $2 \times 2 \times 2$  supercell to simulate the type-II AFM structure of CoO (100). And for CoO (111), the bulk structure restructured along [111] direction. Figure S9 shows the atomic structures of CoO (100) and CoO (111). In consideration of applying strain, the lattice parameter of ab-plane is artificially altered. Then we newly relax the c/a of the structures that are used to calculate the MAE.



**Figure S9.** The atomic structure of (a) CoO (100) and (b) CoO (111). Bule and red spheres represent Co and O atoms, respectively.

The main origin of the magnetic anisotropy is the spin-orbit coupling (SOC)<sup>6</sup>. In this work, the calculations about MAE include two steps: first, the charge density is obtained through self-consistent calculations without the spin-orbital coupling. Then, we calculate the total energy for different magnetization axes, for which we use the same charge density and include the spin-orbital coupling.

For CoO without stress, the easy axis is along [001] (or [100], [010]) direction. When the (001) strain is applied, however, the easy axis will be canted away from [001] direction. As shown in Table 1, the magnetic anisotropy energy ( $E_{[001]-[011]}$ ) changes from negative (strain free) to positive (0.5% strain), suggesting the canting of the easy axis. However, when a 0.5% strain is applied in the (111) plane, the MAE remains negative, meaning that the easy axis is unchanged (Table 1). These calculated results are in nice agreement with the experiments.

**Table 1.** The calculated magnetic anisotropy energies (MAE, in units of meV) of CoO under (100) and (111) strain. The MAE is calculated as  $E_{10011-10111}$ .

|      | (001) | (111) |  |
|------|-------|-------|--|
| 0%   | -7.08 | -7.08 |  |
| 0.5% | 5.01  | -6.66 |  |

## References

- 1. Kresse, G.; Furthmuller, J. Comp Mater Sci **1996**, 6, (1), 15-50.
- 2. Blöchl, P. E. *Phys Rev B* **1994**, 50, (24), 17953-17979.
- 3. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys Rev Lett 1996, 77, (18), 3865-3868.
- 4. Anisimov, V. I.; Poteryaev, A. I.; Korotin, M. A.; Anokhin, A. O.; Kotliar, G. *J Phys-Condens Mat* **1997**, 9, (35), 7359-7367.
- 5. Blöchl, P. E.; Jepsen, O.; Andersen, O. K. *Phys Rev B* **1994**, 49, (23), 16223-16233.
- 6. van Vleck, J. H. *Physical Review* **1937**, 52, (11), 1178-1198.