Electronic Supplementary Information

One-pot "shielding-to-etching" strategy to synthesize amorphous MoS₂ modified CoS/Co_{0.85}Se heterostructured nanotube arrays for

boosted energy-saving H₂ generation

Yulin Sun,^a Saijun Wang,^a Jiqiang Ning,^b Ziyang Zhang,^b Yijun Zhong^a and Yong Hu*a

^aKey Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.

E-mail: <u>yonghu@zjnu.edu.cn</u>

^bVacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics,

Chinese Academy of Sciences, Suzhou 215123, China.

†Electronic supplementary information (ESI) available. See DOI: <u>http://www.rsc.org</u>.

Fig. S1 SEM images of the as-prepared CCH NRs.

Fig. S2 XRD pattern of the as-prepared CCH NRs.

Fig. S3 SEM images of the as-prepared (a, b) $Co_{0.85}Se$ NRs and (c, d) a-MoS₂/CoS HNSs.

Fig. S4 SEM images of the as-prepared (a, d) $a-MoS_2/CoS/Co_{0.85}Se$ HNTs-0.5, (b, e) $a-MoS_2/CoS/Co_{0.85}Se$ HNTs-1 and (c, f) $a-MoS_2/CoS/Co_{0.85}Se$ HNTs-2. TEM images of the as-prepared (g) $a-MoS_2/CoS/Co_{0.85}Se$ HNTs-0.5, (h) $a-MoS_2/CoS/Co_{0.85}Se$ HNTs-1, (i) $a-MoS_2/CoS/Co_{0.85}Se$ HNTs-2. XRD patterns of the as-prepared (j) $a-MoS_2/CoS/Co_{0.85}Se$ HNTs-0.5, (k) $a-MoS_2/CoS/Co_{0.85}Se$ HNTs-1 and (l) $a-MoS_2/CoS/Co_{0.85}Se$ HNTs-2.

Fig. S5 XRD patterns of the as-prepared (a) $Co_{0.85}Se$ NRs and (b) a-MoS₂/CoS HNSs.

Fig. S6 Raman spectra of the as-prepared (a) a-MoS $_2$ /CoS HNSs and (b) Co $_{0.85}$ Se NRs.

Fig. S7 High-resolution XPS spectra of Co 2p for the $a-MoS_2/CoS/Co_{0.85}Se$ HNTs and $a-MoS_2/CoS$ HNSs.

Fig. S8 Polarization curves of the a-MoS $_2$ /CoS/Co $_{0.85}$ Se HNTs in 1.0 M KOH with different urea concentration.

Fig. S9 Polarization curves for UOR and OER of the as-prepared (a) a-MoS₂/CoS HNSs and (b) Co_{0.85}Se NRs.

Fig. S10 Polarization curves of NF towards (a) UOR and (b) HER in 1.0 M KOH with 0.5 M urea.

Fig. S11 (a) Nyquist plots of the a-MoS₂/CoS/Co_{0.85}Se HNTs, a-MoS₂/CoS HNSs and Co_{0.85}Se NRs and (b) the corresponding EIS data for UOR.

Fig. S12 CV curves and the plots of current density as a function of scan rate: (a, b) $a-MoS_2/CoS/Co_{0.85}Se$ HNTs, (c, d) $a-MoS_2/CoS$ HNSs and (e, f) $Co_{0.85}Se$ NRs electrodes in the double layer region at scan rates of 20, 40, 60, 80 and 100 mV s⁻¹ in 1.0 M KOH with 0.5 M urea.

Fig. S13 UOR polarization curves of the different samples normalized by ECSA.

Fig. S14 (a) UOR polarization curves of the a-MoS₂/CoS/Co_{0.85}Se HNTs electrode at different scan rates. (b) The corresponding current densities at 0.8 V versus SCE with different scan rates.

Fig. S15 Multi-current process of a-MoS $_2$ /CoS/Co $_{0.85}$ Se HNTs electrode. The current density started at 10 mA cm⁻

 2 and ended at 110 mA cm 2 with an increment of 10 mA cm 2 per 500 s.

 $Fig. \ S16 \ {\rm Polarization} \ curves \ of \ the \ as-prepared \ a-MoS_2/CoS/Co_{0.85}Se \ HNTs \ electrode \ before \ and \ after \ long-term$

stability test.

Fig. S17 SEM images of the a-MoS $_2$ /CoS/Co $_{0.85}$ Se HNTs electrode after long-term stability test for (a) UOR and

(b) HER.

Fig. S18 (a) Nyquist plots of the a-MoS₂/CoS/Co_{0.85}Se HNTs, a-MoS₂/CoS HNSs and Co_{0.85}Se NRs electrodes and (b) the corresponding EIS data for HER.

Fig. S19 HER polarization curves of the different samples normalized by ECSA.

Fig. S20 Polarization curves of the as-prepared a-MoS $_2$ /CoS/Co $_{0.85}$ Se HNTs in 1.0 M KOH with and without 0.5

M urea.

Fig. S21 Polarization curves for the as-prepared $a-MoS_2/CoS/Co_{0.85}Se$ HNTs, $a-MoS_2/CoS$ HNSs and $Co_{0.85}Se$ NRs electrodes in 1.0 M KOH with 0.5 M urea.

Fig. S22 SEM images of the as-prepared a-MoS $_2$ /CoS/Co $_{0.85}$ Se HNTs electrode after (a) UOR and (b)HER.

Fig. S23 High-resolution XPS spectra of a) Mo 3d, b) Co 2s, c) S 2p and e) Se 3d for the as-prepared a- $MoS_2/CoS/Co_{0.85}Se$ HNTs electrode after UOR.

The concentration Catalyst Potential (V) References of Urea E_(50 mA cm-2)=1.38 a-MoS₂/CoS/Co_{0.85}Se HNTs 0.5 M urea This work HC-NiMoS/Ti E_(60 mA cm-2)=1.38 1 0.5 M urea 2 CoS2 NA/Ti 0.3 M urea E(10 mA cm-2)=1.40 E_(10 mA cm-2)=1.38 3 Ni₃Se₄ nanorod 0.1 M urea E(10 mA cm-2)=1.43 MnO2/MnCo2O4@Ni 0.5 M urea 4 E(50 mA cm-2)=1.39 5 Ni-Mo nanotube 0.1 M urea NF/NiMoO-Ar 0.5 M urea E(10 mA cm-2)=1.37 6 Fe11.1%-Ni3S2/NF 0.33 M urea $E_{(10 \text{ mA cm}-2)} = 1.44$ 7 E(10 mA cm-2)=1.37 $L-MnO_2$ 0.5 M urea 8

Table S1. Comparison of the UOR electrocatalytic performance of the as-prepared a-MoS₂/CoS/Co_{0.85}Se HNTs with other report electrocatalysts in 1.0 M KOH and a certain concentration of urea.

Catalyst	electrolyte	Overpotential (mV) at	References
		10 mA cm ⁻²	
a-MoS ₂ /CoS/Co _{0.85} Se HNTs	1.0 M KOH	127	This work
Co ₃ S ₄ /MoS ₂ /Ni ₂ P NTs	1.0 M KOH	178	9
MoS ₂ /Fe ₅ Ni ₄ S ₈ /FeNi foam	1.0 M KOH	122	10
Co ₉ S ₈ /MoS _x NTs	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	161	11
Ni-Co-MoS ₂ NBs	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	155	12
CoMoS ₄ NS/CC	1.0 M PBi	183	13
Co-BDC/MoS ₂	1.0 M KOH	155	14
(Ni, Fe)S ₂ @MoS ₂	1.0 M KOH	130	15
Co ₉ S ₈ @MoS ₂ /CNFs	$0.5 \mathrm{~M~H_2SO_4}$	190	16

Table S2. Comparison of the HER electrocatalytic performance of the as-prepared a-MoS $_2$ /CoS/Co $_{0.85}$ Se HNTswith other report electrocatalysts.

Table S3. Comparison of the performance of the as-prepared $a-MoS_2/CoS/Co_{0.85}Se$ HNTs with other reportelectrocatalysts for overall urea electrolysis in 1.0 M KOH and a certain concentration of urea.

	The concentration		
Catalyst	of Urea	Potential (V)	References
a-MoS ₂ /CoS/Co _{0.85} Se/NF NTs	0.5 M urea	E _(10 mA cm-2) =1.42	This work
HC-NiMoS/Ti	0.5 M urea	$E_{(10 \text{ mA cm}-2)} = 1.59$	1
NF/NiMoO-Ar NF/NiMoO- H ₂	0.5 M urea	$E_{(10 \text{ mA cm-}2)} = 1.38$	6
MnO ₂ /MnCo ₂ O ₄ /Ni	0.5 M urea	$E_{(10 \text{ mA cm-}2)} = 1.55$	4
Fe _{11.1%} -Ni ₃ S ₂ /NF	0.33 M urea	$E_{(10 \text{ mA cm-}2)} = 1.46$	7
MoS ₂ /Ni ₃ S ₂	0.33 M urea	$E_{(20 \text{ mA cm}-2)} = 1.45$	17
NiCoP/CC	0.5 M urea	$E_{(10 \text{ mA cm-}2)} = 1.42$	18
Ni ₂ P/CFC	0.33 M urea	$E_{(10 \text{ mA cm-2})} = 1.44$	19
Ni-Mo nanotube	0.1 M urea	$E_{(10 \text{ mA cm-}2)} = 1.43$	5
Ni/C	0.33 M urea	$E_{(10 \text{ mA cm}-2)} = 1.60$	20

References

- 1 X. Wang, J. Wang, X. Sun, S. Wei, L. Cui, W. Yang and J. Liu, *Nano Res.*, 2017, **11**, 988-996.
- S. Wei, X. Wang, J. Wang, X. Sun, L. Cui, W. Yang, Y. Zheng and J. Liu, *Electrochim. Acta.*, 2017, 246, 776-782.
- 3 J.-Y. Zhang, X. Tian, T. He, S. Zaman, M. Miao, Y. Yan, K. Qi, Z. Dong, H. Liu and B. Y. Xia, J. Mater. Chem. A, 2018, 6, 15653-15658.
- 4 C. Xiao, S. Li, X. Zhang and D. R. MacFarlane, J. Mater. Chem. A, 2017, 5, 7825-7832.
- 5 J.-Y. Zhang, T. He, M. Wang, R. Qi, Y. Yan, Z. Dong, H. Liu, H. Wang and B. Y. Xia, *Nano Energy*, 2019, **60**, 894-902.
- Z.-Y. Yu, C.-C. Lang, M.-R. Gao, Y. Chen, Q.-Q. Fu, Y. Duan and S.-H. Yu, *Energy Environ. Sci.*, 2018, 11, 1890-1897.
- W. Zhu, Z. Yue, W. Zhang, N. Hu, Z. Luo, M. Ren, Z. Xu, Z. Wei, Y. Suo and J. Wang, *J. Mater. Chem.* A, 2018, 6, 4346-4353.
- 8 S. Chen, J. Duan, A. Vasileff and S. Z. Qiao, *Angew. Chem. Int. Ed.*, 2016, **55**, 3804-3808.
- 9 H. Lin, H. Li, Y. Li, J. Liu, X. Wang and L. Wang, J. Mater. Chem. A, 2017, 5, 25410-25419.
- Y. Wu, F. Li, W. Chen, Q. Xiang, Y. Ma, H. Zhu, P. Tao, C. Song, W. Shang, T. Deng and J. Wu, *Adv. Mater.*, 2018, **30**, 1803151.
- L. Wu, K. Zhang, T. Wang, X. Xu, Y. Zhao, Y. Sun, W. Zhong and Y. Du, ACS Applied Nano Materials, 2018, 1, 1083-1093.
- 12 X.-Y. Yu, Y. Feng, Y. Jeon, B. Guan, X. W. D. Lou and U. Paik, *Adv. Mater.*, 2016, 28, 9006-9011.
- X. Ren, D. Wu, R. Ge, X. Sun, H. Ma, T. Yan, Y. Zhang, B. Du, Q. Wei and L. Chen, *Nano Res.*, 2018, 11, 2024-2033.

- 14 D. Zhu, J. Liu, Y. Zhao, Y. Zheng and S.-Z. Qiao, *Small*, 2019, DOI: 10.1002/smll.201805511, 1805511.
- 15 Y. Liu, S. Jiang, S. Li, L. Zhou, Z. Li, J. Li and M. Shao, Appl. Catal. B: Environ., 2019, 247, 107-114.
- H. Zhu, J. Zhang, R. Yanzhang, M. Du, Q. Wang, G. Gao, J. Wu, G. Wu, M. Zhang, B. Liu, J. Yao and X.
 Zhang, *Adv. Mater.*, 2015, 27, 4752-4759.
- F. Li, J. Chen, D. Zhang, W.-F. Fu, Y. Chen, Z. Wen and X.-J. Lv, *Chem. Commun.*, 2018, 54, 51815184.
- 18 L. Sha, J. Yin, K. Ye, G. Wang, K. Zhu, K. Cheng, J. Yan, G. Wang and D. Cao, *J. Mater. Chem. A*, 2019, 7, 9078-9085.
- X. Zhang, Y. Liu, Q. Xiong, G. Liu, C. Zhao, G. Wang, Y. Zhang, H. Zhang and H. Zhao, *Electrochim. Acta.*, 2017, 254, 44-49.
- 20 L. Wang, L. Ren, X. Wang, X. Feng, J. Zhou and B. Wang, ACS Appl. Mater. Inter., 2018, 10, 4750-4756.