Supplementary information

UV Damage Sensing Nociceptive Device for Bionic Application

Li Zhou,^{1,a} Shi-Rui Zhang,^{1,b} Jia-Qin Yang,^a Jing-Yu Mao,^b Yi

Ren,^b Haiquan Shan,^c Zongxiang Xu,^c Ye Zhou*^b and Su-Ting

Han*^a

a. Institute of Micro Optoelectronics (IMO), Shenzhen University, Shenzhen, 518060, China.

*. Email: sutinghan@szu.edu.cn

b. Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.

*. Email: yezhou@szu.edu.cn

b. Department of Chemistry, Southern University of Science and Technology of China, Shenzhen, 518060, China.

1. These authors contributed equally to this work.

Fig. S1. *I–V* curves of AI/PMMA/ITO device.

Fig. S2. *I–V* curves under compliance current (I_{CC}) of 0.1 mA

Fig. S3. /-V characteristic of memristor with various concentration of Azo-Au NPs.

Fig. S4. Current-voltage characteristics, for 30 memristors tested (a) after UV irradiation (20 mW/cm²) for 30 mins and (b) Distribution of SET voltage of memristors.

Fig. S5. Fitted *I–V* characteristics in a log-log scale before UV irradiation.

Fig. S6. Fitted *I–V* characteristics in a log-log scale after UV irradiation.

Fig. S7. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of Azo ligand

Fig. S8. The typical *I–V* curves from 25 °C to 105 °C

Fig. S9. The output current of the nociceptor under electrical pulses with a different pulse width (from 0.01s to 2s).

Fig.S10. Histogram of the ON and OFF states for 100 memristors tested (a) in dark and (b) after UV irradiation. (Voltage from 2.2 V to 2.8V)