Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019

Supporting Information for "Theoretical screening of efficient single-atom catalysts for nitrogen fixation based on defective BN monolayer"

Zuju Ma, ^{1,2, a)} Zhitao Cui, ¹ Chengwei Xiao, ¹ Wen Dai, ¹ Yaohui Lv, ¹ Qiaohong Li³ and Rongjian Sa, ^{4, a)}

¹Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Ministry of Education), Anhui University of Technology, Ma'anshan, 243002, China

²State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China.

³State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

⁴Institute of Oceanography, Ocean College, Minjiang University, Fuzhou, 350108, China

Author to whom correspondence should be addressed. Electronic mail: mazuju@fjirsm.ac.cn, rjsa@mju.edu.cn .

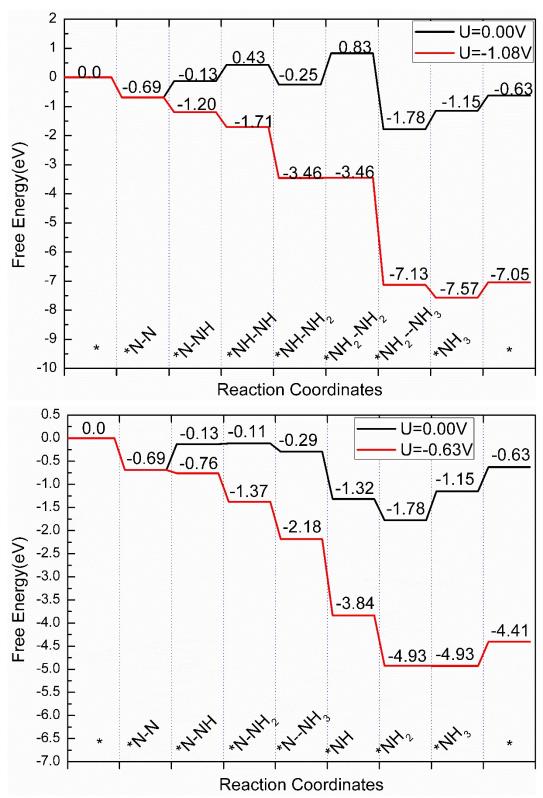


Fig. S1 The calculated free energy diagrams of NRR on the plane of Tc@BN through alternating (a) and distal (b) pathway.

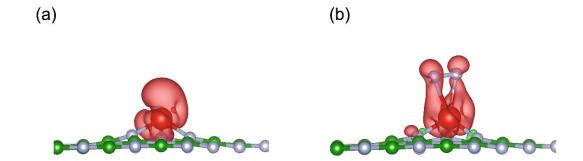


Fig. S2. The Spin density of V@BN before (a) and after (b) N2 adsorption.

Table S1. The Bader charge of V atom, three-coordinated N atoms (N1, N2, and N3) in h-BN and N_2 molecular in V@BN and N_2 adsorbed V@BN, respectively.

	V	N1	N2	N3	N_2	
V@BN	-1.41	1.88	1.89	1.88		
N2*V@BN	-1.75	1.85	1.88	1.85	0.51	