Supporting information for the manuscript

Support Interactions Dictated Active Edge Sites over MoS₂-Carbon Composites

for Hydrogen Evolution

Xiaobin Qiu^{a,†}, Yewei Huang^{a,†}, Zhenzhen Nie^a, Beibei Ma^a, Yongwen Tan^b, Zhenjun Wu^{*a}, Nan Zhang^{*b}, Xiuqiang Xie^{*b}

^a College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China. E-mail: wooawt@hnu.edu.cn.

^b College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China. E-mail: nanzhang@hnu.edu.cn; xiuqiang_xie@hnu.edu.cn.

[†]These authors contribute equally to this work.

Contents list

Figure S1. SEM images of pure MoS₂.

Figure S2. AFM image of MoS₂.

Figure S3. TGA curves of MoS₂/rGO-1, MoS₂/rGO-2, MoS₂/CNT-1 and MoS₂/CNT-2.

Figure S4. TEM images of (a) GO and (b) rGO after MSH treatment. TEM images of CNTs (c) before and (d) after MSH treatment.

Figure S5. SEM images of MoS₂/rGO-2 at different reaction time: (a) 0 min, (b) 2 min, and (c) 4 min.

Figure S6. SEM images of MoS₂/CNT-2 at different reaction time: (a) 0 min, (b) 2 min, and (c) 4 min.

Figure S7. SAED patterns of (a) MoS₂/rGO-2, and (b) MoS₂/CNT-2.

Figure S8. PL spectra of MoS₂/rGO-2 and MoS₂/CNT-2.

Figure S9. Polarization curves of CNT and rGO.

Figure S10. Faradaic efficiency of MoS₂/CNT-2 at 20 mA/cm².

Figure S11. Stability test for MoS₂/CNT-2.

Figure S12. XPS spectra of (a) Mo 3d and S 2s peaks, and (b) S 2p peaks of $MoS_2/CNT-2$ composites before and after HER tests.

Figure S13. Double-layer capacitance analyses for MoS_2 . (a) Cyclic voltammograms in the region of 0.1–0.4 V vs. RHE at different scan rates. (b) The plots of current densities against scan rates. Δj is the difference between anodic and cathodic current densities at 0.23 V vs. RHE. The same parameters are used for the tests below.

Figure S14. Double-layer capacitance analyses for MoS₂/rGO-1.

Figure S15. Double-layer capacitance analyses for MoS₂/rGO-2.

Figure S16. Double-layer capacitance analyses for MoS₂/CNT-1.

Figure S17. Double-layer capacitance analyses for MoS₂/CNT-2.

Figure S18. Nitrogen adsorption-desorption isotherms of (a) MoS₂, (b) MoS₂/rGO-1, (c) MoS₂/rGO-

2, (d) MoS₂/CNT-1, and (e) MoS₂/CNT-2. (f) BET surface areas of MoS₂, MoS₂/rGO-1, MoS₂/rGO-

2, MoS₂/CNT-1 and MoS₂/CNT-2 based on nitrogen adsorption-desorption isotherms.

Figure S19. Polarization curves of MoS₂/CNT-3 and MoS₂/CNT-4.

Table S1 Representative top-down strategies to prepare 2D MoS₂.

Table S2 Comparison of some representative bottom-up strategies recently reported to prepare MoS₂.

Table S3 C 1s XPS results of GO and CNTs.

Table S4 Electrocatalytic performances comparison of our MoS₂-carbon composites with recent related literatures.

References

Figure S1. SEM images of pure MoS₂.

Figure S2. AFM image of MoS₂.

From the AFM results (Fig. S2), the pure MoS_2 has a thickness of 3.9 nm, which is roughly the thickness of 6 layers of MoS_2 .

Figure S3. TGA curves of MoS₂, MoS₂/rGO-1, MoS₂/rGO-2, MoS₂/CNT-1 and MoS₂/CNT-2.

Figure S4. TEM images of (a) GO and (b) rGO after MSH treatment. TEM images of CNTs (c) before and (d) after MSH treatment.

Figure S5. SEM images of MoS₂/rGO-2 at different reaction time: (a) 0 min, (b) 2 min, and (c) 4 min.

Figure S6. SEM images of MoS₂/CNT-2 at different reaction time: (a) 0 min, (b) 2 min, and (c) 4 min.

Figure S7. SAED patterns of (a) MoS₂/rGO-2, and (b) MoS₂/CNT-2.

Figure S8. PL spectra of MoS₂/rGO-2 and MoS₂/CNT-2.

Figure S9. Polarization curves of CNT and rGO.

Figure S10. Faradaic efficiency of MoS₂/CNT-2 at 20 mA/cm².

Figure S11. Stability test for MoS₂/CNT-2.

Figure S12. XPS spectra of (a) Mo 3d and S 2s peaks, and (b) S 2p peaks of MoS₂/CNT-2 composites before and after HER tests.

Figure S13. Double-layer capacitance analyses for MoS₂. (a) Cyclic voltammograms in the region of 0.1–0.4 V vs. RHE at different scan rates. (b) The plots of current densities against scan rates. Δj is the difference between anodic and cathodic current densities at 0.23 V vs. RHE. The same parameters are used for the tests below.

Figure S14. Double-layer capacitance analyses for MoS₂/rGO-1.

Figure 15. Double-layer capacitance analyses for MoS₂/rGO-2.

Figure S16. Double-layer capacitance analyses for MoS₂/CNT-1.

Figure S17. Double-layer capacitance analyses for MoS₂/CNT-2.

Figure S18. Nitrogen adsorption-desorption isotherms of (a) MoS₂, (b) MoS₂/rGO-1, (c) MoS₂/rGO-2, (d) MoS₂/CNT-1, and (e) MoS₂/CNT-2. (f) BET surface areas of MoS₂, MoS₂/rGO-1, MoS₂/rGO-2, MoS₂/CNT-1 and MoS₂/CNT-2 based on nitrogen adsorption-desorption isotherms.

Figure S19. Polarization curves of MoS₂/CNT-3 and MoS₂/CNT-4.

As shown in **Fig. S19**, when the amount of CNTs was increased to 75 mg, the resulting products (denoted as MoS_2/CNT -3) exhibit an overpotential of 163 mV. A further increase of the CNTs feeding amount to 100 mg generates MoS_2/CNT -4, which has an increased overpotential of 195 mV compared to that of MoS_2/CNT -3.

Reagent	Time (h)	Yield (%)	Ref.
Cetyltrimethylammonium bromide/sodium dodecyl sulfate	8	N/A	1
Polyvinylpyrrolidone Dimethylformamide		N/A	2
		N/A	3
Dimethylformamide	6	2.5~3	4
Methyllithium/n-butyllithium/tert-butyllithium		N/A	5
Chitosan	1	3.7	6

Table S1 Representative top-down strategies to prepare 2D MoS₂.

Molybdenum source	ybdenum source Sulfur source Medium Tin		Time	Temp. (°C)	Ref.
Sodium molybdate	Thiourea	Ethanol	24 h	180	7
Molybdenum trioxide	Thioacetamide	Ethanol	18 h	200	8
Sodium molybdate	L-cysteine	Ethanol, water	24 h	220	9
Hexacarbonylmolybdenum	Sulfur	Acetone	8 h	180	10
Ammonium tetrathiomolybdate	Ammonium tetrathiomolybdate	Water	24 h	200	11
Sodium molybdate	Thiourea	Water	12 h	200	12
Ammonium molybdate	Thiourea	Water	24 h	200	13
Molybdenum trioxide	Potassium thiocyanate	Water	24 h	210	14
Sodium molybdate	Thioacetamide	Water	24 h	220	15
Sodium molybdate	Thiourea	Steam	5 min	N/A	This work

Table S2 Comparison of some representative bottom-up strategies recently reported to prepare MoS₂.

Table S3 C 1s XPS results of GO and CNTs.

Sample	C=C and C-C (at.%)	C-O (at.%)	C=O (at.%)
Pristine GO	43.1	37.5	19.4
GO after MSH treatment	62.4	24.3	13.3
Acid treated CNTs	38.8	48.6	12.6
CNTs after MSH treatment	45.9	38.6	10.5

		related interatur	•0.		
Substrate	MoS ₂ ratio (wt%)	Overpotential (mV)	Tafel slope (mV/dec)	C _{dl} (mF/cm²)	Ref.
Graphene	70	132	45	32.73	16
Graphene	~ 44	~ 150	41	N/A	17
rGO	82.8	156	44	~ 65.6	18
Nitrogen-doped graphene	N/A	208	79	28.1	19
Sulfur-doped graphene	25	290	152	N/A	20
Graphene	22.3	~ 560	61	N/A	21
Oxidized CNT	N/A	~ 200	47	31	22
Nitrogen-doped CNTs on carbon paper	N/A	160	36	N/A	23
Acid-treated CNTs	N/A	~ 184	44.6	N/A	24
rGO	86.1	216	56.66	4.08	MoS ₂ /rGO- 1, this work
rGO	75.3	218	56.76	5.04	MoS ₂ /rGO- 2, this work
CNTs	69.2	225	72.99	4.50	MoS ₂ /CNT- 1, this work
CNTs	49.6	194	52.70	5.12	MoS ₂ /CNT- 2, this work
^a CNTs	-	163	N/A	N/A	MoS ₂ /CNT- 3, this work

Table S4 Electrocatalytic performances comparison of our MoS₂-carbon composites with recent related literatures.

Note: ^aThe feeding amount of CNTs is increased to 75 mg, and other experimental procedures are identical to that of MoS_2/CNT -1 and MoS_2/CNT -2. The overpotential is that at j = -10 mA/cm².

References

- 1. A. Gupta, V. Arunachalam and S. Vasudevan, J. Phys. Chem. Lett., 2015, 6, 739-744.
- J. Liu, Z. Zeng, X. Cao, G. Lu, L.-H. Wang, Q.-L. Fan, W. Huang and H. Zhang, *Small*, 2012, 8, 3517-3522.
- 3. Q. D. Truong, M. Kempaiah Devaraju, Y. Nakayasu, N. Tamura, Y. Sasaki, T. Tomai and I. Honma, *ACS Omega*, 2017, **2**, 2360-2367.
- 4. C. Wang, D. Ren, H. S. Park, Z. Dong, Y. Yang, Q. Ren and X. Yu, *J. Alloys Compd.*, 2017, **728**, 767-772.
- 5. A. Ambrosi, Z. Sofer and M. Pumera, *Small*, 2015, **11**, 605-612.
- 6. S. Guo, Z. Qian, Z. Zhu, J. Xie, J. Fan, Q. Xu, P. Shi and Y. Min, *ChemistrySelect*, 2017, **2**, 3117-3128.
- 7. J. Wang, X. Zhao, Y. Fu and W. Xin, *Appl. Surf. Sci.*, 2016, **399**, 237-244.
- X. Geng, Y. Jiao, H. Yang, A. Mukhopadhyay, Y. Lei and H. Zhu, *Adv. Funct. Mater.*, 2017, 27.
- 9. Q. Pang, Y. Zhao, X. Bian, Y. Ju, X. Wang, Y. Wei, B. Liu, F. Du, C. Wang and G. Chen, *J. Mater. Chem. A*, 2017, **5**, 3667-3674.
- 10. L. Nan, Z. Liu, G. Qian, X. Li, R. Wang, Y. Xiao and Y. Li, *J. Mater. Sci.*, 2017, **52**, 13183-13191.
- 11. Z. Li, A. Ottmann, T. Zhang, Q. Sun, H. P. Meyer, Y. Vaynzof, J. Xiang and R. Klingeler, *J. Mater. Chem. A*, 2017, **5**.
- 12. Y. Jiang, Y. Guo, W. Lu, Z. Feng, B. Xi, S. Kai, J. Zhang, J. Feng and S. Xiong, *ACS Appl. Mater. Interfaces*, 2017, **9**, 27697-27706.
- 13. C. Li, J. Li, Z. Wang, S. Zhang, G. Wei, J. Zhang, H. Wang and C. An, *Inorg. Chem. Front.*, 2017, **4**, 309-314.
- 14. S. Liang, Z. Jiang, L. Jing, A. Pan, T. Yan, C. Tao and G. Fang, *Crystengcomm*, 2013, **15**, 4998-5002.
- 15. H. Lin, X. Chen, H. Li, M. Yang and Y. Qi, *Mater. Lett.*, 2010, 64, 1748-1750.
- 16. Y. Li, B. He, X. Liu, X. Hu, J. Huang, S. Ye, Z. Shu, Y. Wang and Z. Li, *Int. J. Hydrogen Energy*, 2019, **44**, 8070-8078.
- 17. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong and H. Dai, J. Am. Chem. Soc., 2011, **133**, 7296-7299.
- 18. S. Khazraei, M. Karimipour, M. Molaei and M. R. Moghadam, Int. J. Hydrogen Energy, 2019, 44, 13284-13295.
- 19. D. M. Nguyen, P. D. Hai Anh, L. G. Bach and Q. B. Bui, *Mater. Res. Bull.*, 2019, **115**, 201-210.
- 20. A. Kagkoura, M. Pelaez-Fernandez, R. Arenal and N. Tagmatarchis, *Nanoscale Adv.*, 2019, **1**, 1489-1496.
- 21. L. Xu, Y. Gu, Y. Li, H. Liu, Y. Shang, Y. Zhu, B. Zhou, L. Zhu and X. Jiang, J. Colloid Interface Sci., 2019, 542, 355-362.
- 22. H. Huang, W. Huang, Z. Yang, J. Huang, J. Lin, W. Liu and Y. Liu, *J. Mater. Chem. A*, 2017, **5**, 1558-1566.
- 23. J. Ekspong, T. Sharifi, A. Shchukarev, A. Klechikov, T. Wågberg and E. Gracia-Espino, *Adv. Funct. Mater.*, 2016, **26**, 6766-6776.
- 24. Y. Yan, X. Ge, Z. Liu, J.-Y. Wang, J.-M. Lee and X. Wang, *Nanoscale*, 2013, 5, 7768-7771.