Bio-derived yellow porous TiO₂: Lithiation induced activation of oxygen-vacancy dominated TiO₂ lattice evoking a large boost in lithium storage performance

Lanju Sun, Wei Liu*, Ruitao Wu, Yongpeng Cui, Yuan Zhang, Yongxu Du,

Shuai Liu, Shuang Liu, Huanlei Wang

School of Materials Science and Engineering, Ocean University of China,

Qingdao 266100, People's Republic of China.

Supporting information

Figure S1. (a) TG curve and (b) RM spectrum of HPYT

As known from TG result (figure S1a), the amount of carbon can be negligible due to only 0.8 % amount was detected (Figure 2i, the 3.6 % weight loss should be assigned to the water loss in the samples), and no carbon peaks were identified in RM sperctrums (Figure S1b), both of which indicated that APTN was mainly constructed by TiO_2 .

Figure S2. SEM image of the AES.

Figure S3. SEM image of the shell structure of AES.

Figure S4. SEM images of the HPYT samples.

Figure S5. Low-magnification TEM of the HPYT sample.

Materials	High rate capacity	Cycling performance	Cycling performance	nce Ref	
	<i>8</i>	(≤5A g ⁻¹)	(≤10A g ⁻¹)	-	
AmorphousTiO ₂ -	271.2mAh g ⁻¹ at 0.1A	201.3mAh g ⁻¹ at 5A g ⁻¹	((10115)	1	
100	g ⁻¹ , 132.6mAh g ⁻¹ at	¹ after 650 cycles		_	
@CNTs/CFP	40A g ⁻¹	5			
anatase/TiO ₂ -B	280mAh g ⁻¹ at 85mA	180mAh g ⁻¹ at 3.4A g ⁻	110mAh g ⁻¹ at 8.5A g ⁻¹	2	
nanosheets	g ⁻¹ , 100mAh g ⁻¹ at 8.5A g ⁻¹	¹ after 1000 cycles	after 1000 cycles		
HM-TiO ₂ -NB	292mAh g ⁻¹ at 67mA g ⁻¹ , 112mAh g ⁻¹ at 3.4A g ⁻¹	174mAh g ⁻¹ at 0.3A g ⁻¹ after 500 cycles	96mAh g ⁻¹ at 10A g ⁻¹ after 50 cycles	3	
Olive-like	267mAh g ⁻¹ at	125mAh g ⁻¹ at 3.4A g ⁻		4	
anatase TiO ₂ /C	33.6mA g ⁻¹ , 110mAh g ⁻¹ at 6.7A g ⁻¹	¹ after 1000 cycles			
TiO ₂ -graphene	268mAh g ⁻¹ at	126mAh g ⁻¹ at 3.4A g ⁻		5	
nanocomposite	37.2mA g ⁻¹ , 111mAh g ⁻¹ at 3.4A g ⁻¹	¹ after 18000 cycles			
TiO ₂ @NFG	205mAh g ⁻¹ at 84mA	129mAh g ⁻¹ at 3.4 A	116mAh g ⁻¹ at 6.7A g ⁻¹	6	
HPHNSs	g ⁻¹ , 101mAh g ⁻¹ at 20 A g ⁻¹	g ⁻¹ after 20000 cycles	after 10000 cycles		
R-TiO _{2-x} -S	264.8mAh g ⁻¹ at	128.5mAh g ⁻¹ at		7	
	50mA g ⁻¹ , 128.5mAh	10000mA g ⁻¹ after			
	g ⁻¹ at 10A g ⁻¹	6500 cycles			
M-TiO ₂ -GS	205mAh g ⁻¹ at 168	94mAh g ⁻¹ at 1.7A g ⁻¹		8	
	mA g ⁻¹ , 76mAh g ⁻¹ at 6.7A g ⁻¹	after 3500 cycles			
2D mesoporous	220mAh g ⁻¹ at 0.1A g ⁻		44mAh g ⁻¹ at 10A g ⁻¹	9	
ΓiO_2 nanosheets	¹ , 67mAh g ⁻¹ at 10A g ⁻		after 10000 cycles		
C-TiO ₂	215.8mAh g ⁻¹ at 0.1A	140mAh g ⁻¹ at 1A g ⁻¹		10	
	g ⁻¹ , 70mAh g ⁻¹ at 10A g ⁻¹	after 1000 cycles			
NTiO ₂ @NC	515.3mAh g ⁻¹ at 0.2A	232.7mAh g ⁻¹ at 5A g ⁻		11	
	g ⁻¹ , 300mAh g ⁻¹ at 2A g ⁻¹	¹ after 2000 cycles			
blue TiO ₂ (B)	204.6mAh g ⁻¹ at	80.9mAh g ⁻¹ at 3.4A		12	
nanobelts	84mA g ⁻¹ , 106.8mAh g ⁻¹ at 0.4A g ⁻¹	g ⁻¹ after 5000 cycles			
G/P-RTiO ₂	202.4mAh g ⁻¹ at	74.6mAh g ⁻¹ at 3.4A		13	
	84mA g ⁻¹ , 101.5mAh g ⁻¹ at 2.5A g ⁻¹	g ⁻¹ after 4000 cycles			
Hierarchical	216mAh g ⁻¹ at 3.4A g ⁻	160mAh g ⁻¹ at 1.7A g ⁻		14	
tubular TiO ₂ (B)	¹ , 130mAh g ⁻¹ at 6.7A	¹ after 400 cycles			

Table S1. The performance comparison of HPYT and previously reported samples

	10A g ⁻¹			
	g-1, 130mAh g-1 at	after 2000 cycles	after 8000 cycles	work
HPYT	417mAh g ⁻¹ at 0.1A	480mAh g ⁻¹ at 5A g ⁻¹	206mAh g ⁻¹ at 10A g ⁻¹	This
	g ⁻¹			
	g ⁻¹ , 57mAh g ⁻¹ at 10A	¹ after 5000 cycles		
TiO ₂ /TiC@C	252mAh g ⁻¹ at 0.33A	150mAh g ⁻¹ at 1.5A g ⁻		16
	g ⁻¹ at 6.7A g ⁻¹			
TiO ₂	33.5mA g ⁻¹ , 145mAh	¹ after 2500 cycles		
NCF@CNTs-	252mAh g ⁻¹ at	154mAh g ⁻¹ at 3.4A g ⁻		15
structures	g ⁻¹			

- 1. H. Wang, G. Jia, Y. Guo, Y. Zhang, H. Geng, J. Xu, W. Mai, Q. Yan and H. J. Fan, *Advanced Materials Interfaces*, 2016, **3**, 1600375.
- Q. Wu, J. Xu, X. Yang, F. Lu, S. He, J. Yang, H. J. Fan and M. Wu, *Advanced Energy Materials*, 2015, 5, 1401756.
- 3. J. Jin, S. Z. Huang, J. Liu, Y. Li, L. H. Chen, Y. Yu, H. E. Wang, C. P. Grey and B. L. Su, *Advanced science*, 2015, **2**, 1500070.
- J. Chen, Y. Zhang, G. Zou, Z. Huang, S. Li, H. Liao, J. Wang, H. Hou and X. Ji, *Small*, 2016, 12, 5554-5563.
- Z. Le, F. Liu, P. Nie, X. Li, X. Liu, Z. Bian, G. Chen, H. B. Wu and Y. Lu, *ACS nano*, 2017, 11, 2952-2960.
- C. K. Christensen, M. A. H. Mamakhel, A. R. Balakrishna, B. B. Iversen, Y. M. Chiang and D. B. Ravnsbaek, *Nanoscale*, 2019, 11, 12347-12357.
- H. He, D. Huang, W. Pang, D. Sun, Q. Wang, Y. Tang, X. Ji, Z. Guo and H. Wang, Advanced materials, 2018, 30, 1801013.
- 8. H. Luo, C. Xu, B. Wang, F. Jin, L. Wang, T. Liu, Y. Zhou and D. Wang, *Electrochimica Acta*, 2019, **313**, 10-19.
- 9. K. Lan, Y. Liu, W. Zhang, Y. Liu, A. Elzatahry, R. Wang, Y. Xia, D. Al-Dhayan, N. Zheng and D. Zhao, *Journal of the American Chemical Society*, 2018, **140**, 4135-4143.
- 10. W. Zheng, Z. Yan, Y. Dai, N. Du, X. Jiang, H. Dai, X. Li and G. He, *ACS applied materials* & *interfaces*, 2017, **9**, 20491-20500.
- 11. M. Ren, H. Xu, F. Li, W. Liu, C. Gao, L. Su, G. Li and J. Hei, *Journal of Power Sources*, 2017, **353**, 237-244.
- 12. S. G. Ullattil, S. B. Narendranath, S. C. Pillai and P. Periyat, *Chemical Engineering Journal*, 2018, **343**, 708-736.
- 13. Y. Zhang, C. W. Foster, C. E. Banks, L. Shao, H. Hou, G. Zou, J. Chen, Z. Huang and X. Ji, *Advanced materials*, 2016, **28**, 9391-9399.
- H. Hu, L. Yu, X. Gao, Z. Lin and X. W. Lou, *Energy & Environmental Science*, 2015, 8, 1480-1483.
- 15. B. W. Wei Yuan, Hao Wua, Mingwu Xiang, Qiong Wang, Heng Liu, Yun Zhang, Huakun Liu, Shixue Dou, *Journal of Power Sources* 2018, **397**, 10-19.
- L. Z. Wei Zhang, Biao Kong, Bingjie Chen, Haili He, Kun Lan, Yang Liu, Jinhu Yang, and Dongyuan Zhao, *iScience* 2018, 3, 149.