Supporting Information

# Hierarchical Glucose-intercalated NiMn-G-LDH@NiCo<sub>2</sub>S<sub>4</sub> Core-Shell Structure as Binder-Free Electrode for Flexible All-Solid-State Asymmetric Supercapacitors

Shixia Chen<sup>†,§</sup>, Chengxi Lu<sup>‡</sup>, Lu Liu<sup>†</sup>, Mai Xu<sup>§</sup>, Jun Wang<sup>†,\*</sup>, Qiang Deng<sup>†</sup>, Zheling Zeng<sup>†</sup>, Shuguang

Deng §,\*

<sup>†</sup> Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang, 330031, China
<sup>‡</sup> School for Molecular Sciences, Arizona State University, 550 E. Tyler Mall, Tempe, AZ 85287, USA
<sup>§</sup> School for Engineering of Matter, Transport and Energy, Arizona State University, 551 E. Tyler Mall, Tempe, AZ 85287, USA

\*Corresponding author:

- 1. E-mail: shuguang.deng@asu.edu (S. Deng)
- 2. E-mail: jwang7@ncu.edu.cn (J. Wang)

# Table of contents

| Fig. S1 XRD patterns of NiCo-OH@CFC                                                                                                                              | 3                                   |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|--|--|
| Fig. S2 FT-IR spectra of NiMn-LDH and NiMn-G-LDH                                                                                                                 | 3                                   |  |  |  |  |
| Fig. S3 SEM images of NiMn-G-LDH@CFC                                                                                                                             | 4                                   |  |  |  |  |
| Fig. S4 EDS mapping images of S and C on NiMn-G-LDH@NiCo <sub>2</sub> S <sub>4</sub> that were scratched from the CFC                                            | 4                                   |  |  |  |  |
| Fig. S5 XPS survey spectra of NiMn-G-LDH@NiCo <sub>2</sub> S <sub>4</sub> @CFC                                                                                   | 5                                   |  |  |  |  |
| Fig. S6 (a)Ni 2p (b) Co 2p and (c) S 2p spectrum of NiCo <sub>2</sub> S <sub>4</sub> @CFC and (d) Mn 2p of NiMn-G-LDH@NiC                                        | o <sub>2</sub> S <sub>4</sub> @CFC. |  |  |  |  |
|                                                                                                                                                                  | 5                                   |  |  |  |  |
| Fig. S7 (a)Mn 2p and (b) C 1s spectrum of of NiMn-G-LDH@NiCo <sub>2</sub> S <sub>4</sub> @CFC.                                                                   | 6                                   |  |  |  |  |
| Fig. S8 N <sub>2</sub> adsorption-desorption isotherm and pore size distribution of the NiMn-G-LDH that were scratch                                             | red from the                        |  |  |  |  |
| CFC.                                                                                                                                                             | 6                                   |  |  |  |  |
| Fig. S9 CV curves of the pristine CFC at 20 mV s <sup>-1</sup>                                                                                                   | 7                                   |  |  |  |  |
| Fig. S10 (a) CV curves, (b) GCD curves and specific capacity at various current densities of NiCo-OH@CFO                                                         | C and (c) CV                        |  |  |  |  |
| curves, (d) GCD curves and specific capacity at various current densities of NiCo2S4@CFC.                                                                        | 7                                   |  |  |  |  |
| Fig. S11 IR drop of NiMn-G-LDH@CFC, NiCo <sub>2</sub> S <sub>4</sub> @CFC, and NiMn-G-LDH@NiCo <sub>2</sub> S <sub>4</sub> @CFC under var                        | ious current                        |  |  |  |  |
| densities.                                                                                                                                                       | 8                                   |  |  |  |  |
| Fig. S12 (a) CV curves, (b) GCD curves and specific capacity at various current densities of                                                                     | NiMn-LDH                            |  |  |  |  |
| @NiCo <sub>2</sub> S <sub>4</sub> @CFC and (c) EIS of NiMn-LDH@NiCo <sub>2</sub> S <sub>4</sub> @CFC and NiMn-G-LDH@NiCo <sub>2</sub> S <sub>4</sub> @CFC.9_Toc2 | 26481233                            |  |  |  |  |
| Fig. S13 (a) CV curves, (b) GCD curves and specific capacity at various current densities of NiMn-LDH@                                                           | CFC and (c)                         |  |  |  |  |
| CV curves, (d) GCD curves and specific capacity at various current densities of NiMn-G-LDH@CFC                                                                   | 10                                  |  |  |  |  |
| Fig. S14 Capacitive and diffusion-controlled contribution to the charge storage of $NiCo_2S_4@CFC$                                                               | 11                                  |  |  |  |  |
| Fig. S15 (a) CV of AC negative electrode at different scanning rates and (b) GCD curves at different curve                                                       | ent densities                       |  |  |  |  |
|                                                                                                                                                                  | 11                                  |  |  |  |  |
| Fig. S16 Electrochemical performance of NiMn-G-LDH@NiCo2S4@CFC//AC assembled in aqueous system                                                                   | n (a) CV and                        |  |  |  |  |
| (b) GCD curves; (c) specific capacitances of the SASC device at various current densities; (d) cycling stability                                                 | y at a current                      |  |  |  |  |
| density of 10 A g <sup>-1</sup>                                                                                                                                  | 12                                  |  |  |  |  |
| Fig. S17 LED lighting test with two device connected in series                                                                                                   | 12                                  |  |  |  |  |
| Table S1. Comparison of intercalated and un-intercalated LDH electrodes in the three-electrode system.                                                           | 13                                  |  |  |  |  |
| <b>Gable S2.</b> Comparison of electrochemical performance of LDHs-based electrodes in the three-electrode system13                                              |                                     |  |  |  |  |

 Table S3. The energy density and power density of various electrodes in an ASC system in references.
 13



Fig. S1. XRD patterns of NiCo-OH@CFC



Fig. S2. FT-IR spectra of NiMn-LDH and NiMn-G-LDH

FT-IR was performed to further verify the glucose intercalation. As shown in Fig. S2, the strong and broad absorption in the range of 3400-3600 cm<sup>-1</sup> and the peak at 1632 cm<sup>-1</sup> was observed in both samples, which can be ascribed to -OH and interlayer H<sub>2</sub>O of LDH. <sup>1</sup> The peaks in the range of 400-800 cm<sup>-1</sup> are mainly assigned to the vibrations of Ni-O and Mn-O bonds in the LDHs. And the peaks centered at 1336 cm<sup>-1</sup> and 1193 cm<sup>-1</sup> are assigned to  $CO_3^{2-}$  and C-O, suggesting the  $CO_3^{2-}$  intercalation in both NiMn-LDH and NiMn-G-LDH, which is consistent with the XRD results. Specially, the double peaks around 2868

cm<sup>-1</sup> and the obviously discerned peaks at 1042 and 985 cm<sup>-1</sup> in the NiMn-G-LDH are due to stretching vibration of C-H, C-OH and CH<sub>2</sub>, respectively, verifying the successful intercalation of glucose into the interlayer of NiMn-G-LDH. The result is consistent with the previous literatures. <sup>2,3</sup>



Fig. S3. SEM images of NiMn-G-LDH@CFC.



Fig. S4. EDS mapping images of S and C on NiMn-G-LDH@NiCo $_2S_4$  that were scratched from the CFC.



Fig. S5. XPS survey spectra of NiMn-G-LDH@NiCo<sub>2</sub>S<sub>4</sub>@CFC.



Fig. S6. (a)Ni 2p (b) Co 2p and (c) S 2p spectrum of  $NiCo_2S_4$  (c)FC and (d) Mn 2p of NiMn-G-

LDH@NiCo<sub>2</sub>S<sub>4</sub>@CFC.



Fig. S7. (a)Mn 2p and (b) C 1s spectrum of of NiMn-G-LDH@NiCo<sub>2</sub>S<sub>4</sub>@CFC.



**Fig. S8.** N<sub>2</sub> adsorption-desorption isotherm and pore size distribution of the NiMn-G-LDH that were scratched from the CFC.



Fig. S9. CV curves of the pristine CFC at 20 mV s<sup>-1</sup>.



Fig. S10. (a) CV curves, (b) GCD curves and specific capacity at various current densities of NiCo-OH@CFC and (c) CV curves, (d) GCD curves and specific capacity at various current densities of NiCo<sub>2</sub>S<sub>4</sub>@CFC.

The electrochemical performance of NiCo-OH@CFC and NiCo<sub>2</sub>S<sub>4</sub>@CFC were investigated in a threeelectrode configuration. Fig. S10a and S10c show the CV curves of the NiCo-OH@CFC and NiCo<sub>2</sub>S<sub>4</sub>@CFC electrodes at different scan rates ranging from 5 to 50 mV s<sup>-1</sup>, respectively. Obviously, two pairs of similar well-defined redox peaks can be observed and the integrated CV area of NiCo<sub>2</sub>S<sub>4</sub>@CFC is much larger than that of the NiCo-OH@CFC, suggesting the improved specific capacitance by the sulfurization. Moreover, the calculated specific capacity based on the GCD of NiCo-OH@CFC and NiCo<sub>2</sub>S<sub>4</sub>@CFC are 130 C g<sup>-1</sup> and 561 C g<sup>-1</sup> at 1 A g<sup>-1</sup>, respectively. With the increase of current density, the specific capacitance retention of 58.5% for the NiCo-OH@CFC electrodes is lower than that of 67.1 % for the NiCo<sub>2</sub>S<sub>4</sub>@CFC. The enhanced specific capacitance and rate retention can be attributed to the better electronic conductivity and faster redox reactions of NiCo<sub>2</sub>S<sub>4</sub>@CFC.



Fig. S11. IR drop of NiMn-G-LDH@CFC, NiCo<sub>2</sub>S<sub>4</sub>@CFC, and NiMn-G-LDH@NiCo<sub>2</sub>S<sub>4</sub>@CFC under

various current densities.



Fig. S12. (a) CV curves, (b) GCD curves and specific capacity at various current densities of NiMn-LDH @NiCo<sub>2</sub>S<sub>4</sub>@CFC and (c) EIS of NiMn-LDH@NiCo<sub>2</sub>S<sub>4</sub>@CFC and NiMn-G-LDH@NiCo<sub>2</sub>S<sub>4</sub>@CFC.

The corresponding electrochemical tests of NiMn-LDH@NiCo<sub>2</sub>S<sub>4</sub>@CFC were conducted as a control. As displayed in Fig. S12a, the CV curves deformed when the scan rate increased to above 30 mV s<sup>-1</sup>, suggesting an inferior specific capacity retention. The calculated specific capacity based on the GCD of NiMn-LDH@NiCo<sub>2</sub>S<sub>4</sub>@CFC is 783 C g<sup>-1</sup> at 1A g<sup>-1</sup>, which is lower than that of NiMn-G-LDH@CFC (1018 C g<sup>-1</sup>). Additionally, NiMn-LDH@NiCo<sub>2</sub>S<sub>4</sub>@CFC also exhibit lower specific capacitances retention of 53.6% than that of NiMn-G-LDH@NiCo<sub>2</sub>S<sub>4</sub>@CFC (68.4%) at 20 A g<sup>-1</sup> (Fig. S12b). In order to better understand the improved ionic diffusion and charge transfer after glucose intercalation, the Nyquist plots of NiMn-LDH@NiCo<sub>2</sub>S<sub>4</sub>@CFC and NiMn-G-LDH@NiCo<sub>2</sub>S<sub>4</sub>@CFC were compared and fitted with the equivalent circuit model (Figure S12c). Upon glucose intercalation, NiMn-G-LDH@NiCo<sub>2</sub>S<sub>4</sub>@CFC possess smaller charge transfer resistance ( $R_{ct}$ , 0.37  $\Omega$ ) and higher Warburg slope ( $W_0$ , 0.467) than those of NiMn-LDH@NiCo<sub>2</sub>S<sub>4</sub>@CFC ( $R_{ct}$ , 0.88  $\Omega$  and  $W_0$ , 0.452).<sup>4,5</sup>



Fig. S13. (a) CV curves, (b) GCD curves and specific capacity at various current densities of NiMn-LDH@CFC and (c) CV curves, (d) GCD curves and specific capacity at various current densities of NiMn-G-LDH@CFC.

The electrochemical performance of NiMn-LDH@CFC and NiMn-G-LDH@CFC were also measured in a three-electrode system. The CV curves of the NiMn-LDH@CFC and NiMn-G-LDH@CFC electrodes also exhibit two pairs of similar well-defined redox peaks and the integrated CV area of NiMn-G-LDH@CFC is much larger than that of the NiCo-OH@CFC, implying the improved specific capacitance by the glucose intercalation (shown in Fig. S13a and S13c). Thus, the calculated specific capacity based on the GCD of NiMn-G-LDH@CFC is 666 C g<sup>-1</sup>, which is much higher than that of 384 C g<sup>-1</sup> for the NiMn-LDH@CFC at 1 A g<sup>-1</sup>. Moreover, NiMn-G-LDH@CFC yield similar specific capacitance retention of 78.1%, compared with that of 80.1% for NiMn-LDH @CFC at 20 A g<sup>-1</sup> even at a much higher initial capacitance.



Fig. S14. Capacitive and diffusion-controlled contribution to the charge storage of NiCo<sub>2</sub>S<sub>4</sub>@CFC.



Fig. S15. (a) CV of AC negative electrode at different scanning rates and (b) GCD curves at different current densities



Fig. S16. Electrochemical performance of NiMn-G-LDH@NiCo<sub>2</sub>S<sub>4</sub>@CFC//AC assembled in aqueous system (a) CV and (b) GCD curves; (c) specific capacitances of the SASC device at various current densities; (d) cycling stability at a current density of 10 A g<sup>-1</sup>.



Fig. S17. LED lighting test with two device connected in series

| Electrode materials    | Specific capacity (1 A g <sup>-1</sup> ) | Specific capacity (20 A g <sup>-1</sup> ) |
|------------------------|------------------------------------------|-------------------------------------------|
| NiMn-LDH@CFC           | 384 C g <sup>-1</sup>                    | 308 C g <sup>-1</sup>                     |
| NiMn-G-LDH@CFC         | 666 C g <sup>-1</sup>                    | 520 C g <sup>-1</sup>                     |
| NiMn-LDH@NiCo2S4@CFC   | 783 C g <sup>-1</sup>                    | 420 C g <sup>-1</sup>                     |
| NiMn-G-LDH@NiCo2S4@CFC | 1018 C g <sup>-1</sup>                   | 696 C g <sup>-1</sup>                     |

Table S1. Comparison of intercalated and un-intercalated LDH electrodes in the three-electrode system.

## Table S2. Comparison of electrochemical performance of LDHs-based electrodes in the three-electrode

### system.

| Electrode materials                       | Electrolyte | Specific capacitance                          | Rate capability               | Ref.      |
|-------------------------------------------|-------------|-----------------------------------------------|-------------------------------|-----------|
| NiMn-G-LDH@NiCo2S4@CFC                    | 6M KOH      | 2036 F g <sup>-1</sup> (1 A g <sup>-1</sup> ) | 68.4% at 20A g <sup>-1</sup>  | This work |
| NiMn-LDH/rGO                              | 2 M KOH     | $1635 \text{ F g}^{-1} (1 \text{ A g}^{-1})$  | 71.0% at 10 A g <sup>-1</sup> | 6         |
| Glucose-intercalated NiMn-LDH             | 6 M KOH     | 1464 F $g^{-1}$ (0.5 A $g^{-1}$ )             | 59.4% at 10 A $\rm g^{-1}$    | 2         |
| (Ni,Co)Se <sub>2</sub> /NiCo-LDH@CFC      | 3 M KOH     | 1224 F $g^{-1}$ (2 A $g^{-1}$ )               | 71.0% at 20 A $\rm g^{-1}$    | 7         |
| KCu <sub>7</sub> S <sub>4</sub> @NiMn LDH | 1M LiOH     | 734 F $g^{-1}$ (1 A $g^{-1}$ )                | 76.9% at 30 A $\rm g^{-1}$    | 1         |
| NiCo <sub>2</sub> O <sub>4</sub> @CNT     | 2 M KOH     | 1596 F $g^{-1}$ (1 A $g^{-1}$ )               | 88.1% at 10 A $g^{-1}$        | 8         |

Table S3. The energy density and power density of various electrodes in an ASC system in references.

| Asymmetric supercapacitor                                             | Energy density                    | Power density             | Ref.      |
|-----------------------------------------------------------------------|-----------------------------------|---------------------------|-----------|
| NiMn-G-LDH@NiCo <sub>2</sub> S <sub>4</sub> @CFC// AC                 | $60.3 \text{ Wh kg}^{-1}$         | $375 \text{ W kg}^{-1}$   | This work |
| Core-shell NiCo-LDH/NiCoP@NiMn-LDH                                    | 42.2 Wh $kg^{-1}$                 | $750 \mathrm{~W~kg^{-1}}$ | 9         |
| Core-shell NiCo <sub>2</sub> S <sub>4</sub> @Ni(OH) <sub>2</sub> @PPy | 34.7 Wh kg <sup>-1</sup>          | $120 \mathrm{~W~kg^{-1}}$ | 10        |
| NiCo <sub>2</sub> S <sub>4</sub> nanopetals //AC                      | 35.6 Wh kg <sup>-1</sup>          | 820 W kg <sup>-1</sup>    | 11        |
| Core-shell (Ni,Co)Se <sub>2</sub> /NiCo-LDH //AC                      | $39.0 \text{ Wh } \text{kg}^{-1}$ | $1650 \text{ W kg}^{-1}$  | 7         |
| Core-shell CoS <sub>x</sub> /Ni-Co LDH//AC                            | 35.8 Wh kg <sup>-1</sup>          | $800 \mathrm{~W~kg^{-1}}$ | 12        |

#### **References:**

- X. L. Guo, J. M. Zhang, W. N. Xu, C. G. Hu, L. Sun and Y. X. Zhang, J. Mater. Chem. A, 2017, 5, 20579-20587.
- L. Lv, K. Xu, C. Wang, H. Wan, Y. Ruan, J. Liu, R. Zou, L. Miao, K. (Ken) Ostrikov, Y. Lan and J. Jiang, *Electrochim. Acta*, 2016, 216, 35-43.
- M. Padmini, S. K. Kiran, N. Lakshminarasimhan, M. Sathish and P. Elumalai, *Electrochim. Acta*, 2017, **236**, 359-370.
- 4 M. Xu, Y. Liu, N. Fu, W. Lu, G. Zhang, H. Huang and L. Zhou, *Adv. Funct. Mater.*, 2017, 27, 1605307.
- M. Wang, Z. Li, C. Wang, R. Zhao, C. Li, D. Guo, L. Zhang and L. Yin, *Adv. Funct. Mater.*, 2017, 27, 1701014.
- 6 M. Li, J. P. Cheng, J. Wang, F. Liu and X. B. Zhang, *Electrochim. Acta*, 2016, **206**, 108-115.
- 7 X. Li, H. Wu, C. Guan, Y. Dong, J. Wang, H. Wu, S. J. Pennycook, X. Li and A. M. Elshahawy, *Small*, 2018, 15, 1803895.
- 8 P. Wu, S. Cheng, M. Yao, L. Yang, Y. Zhu, P. Liu, O. Xing, J. Zhou, M. Wang, H. Luo and M. Liu, *Adv. Funct. Mater.*, 2017, 27, 1702160.
- 9 H. Liang, J. Lin, H. Jia, S. Chen, J. Qi, J. Cao, T. Lin, W. Fei and J. Feng, *J. Mater. Chem. A*, 2018,
  6, 15040-15046.
- 10 M. Liang, M. Zhao, H. Wang, J. Shen and X. Song, J. Mater. Chem. A, 2018, 6, 2482-2493.
- 11 Y. Wen, S. Peng, Z. Wang, J. Hao, T. Qin, S. Lu, J. Zhang, D. He, X. Fan and G. Cao, *J. Mater. Chem. A*, 2017, 5, 7144-7152.
- 12 X. Guan, M. Huang, L. Yang, G. Wang and X. Guan, *Chem. Eng. J.*, 2019, **372**, 151-162.