Support Information

Chinese Hydrangea Lantern-like Co₉S₈@MoS₂ Composites with Enhanced Lithium ion Battery Properties

Kai Yang, Tao Mei*, Zihe Chen, Man Xiong, Xuhui Wang, Jianying Wang, Jinhua Li,

Li Yu, Jingwen Qian, Xianbao Wang*

Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University. Wuhan 430062, PR China.

*Email: meitao@hubu.edu.cn; Fax: +86 27 8866 1729; Tel: +86 27 8866 2132

Synthesis of pure Co₉S₈ Spheres

1 mmol CoCO₃ was dispersed in 20 mL EA by ultrasound for 30 min to form a pink solution. Then 1.5 mmol TAA were added to the above solution under magnetic stirring to form homogeneous solution, at the same time, 10 mL DMF and 3 mL NaOH solution (0.02 mol L⁻¹) were added and vigorously stirred for 30 min. The mixture solution was transferred into a 50 mL Teflon-lined stainless steel autoclave and heated in an oven at 160 °C for 24 h. After cooling to room temperature, black precipitate was collected by centrifugation and washed with DI and ethanol there time, respectively, and then dried at 60 °C for 12 h.

Synthesis of pure MoS₂

1 mmol Na_2MoO_4 2H₂O and 2 mmol TAA were added to the above solution under magnetic stirring to form homogeneous solution, at the same time, 10 mL DMF and 3 mL NaOH solution (0.02 mol L⁻¹) were added and vigorously stirred for 30 min. The mixture solution was transferred into a 50 mL Teflon-lined stainless steel autoclave and heated in an oven at 160 °C for 24 h. After cooling to room temperature, black precipitate was collected by centrifugation and washed with DI and ethanol there time, respectively, and then dried at 60 °C for 12 h.

Contents

Figure

Figure S1. The XRD curves of pure Co₉S₈ and pure MoS₂.

Figure S2. Different magnification FESEM images (a, b) pure MoS_2 , (c, d) pure Co_9S_8 .

Figure S3. The discharge capacity of pure Co_9S_8 , pure MoS_2 and $Co_9S_8@MoS_2$ at current density of 1.0 A g⁻¹

Figure S4. The FESEM image of $Co_9S_8@MoS_2$ at different magnification after 300 cycles.

Figure S5. Nyquist plots of the AC impedance spectra for pure Co_9S_8 , MoS_2 and Co_9S_8 @MoS₂.

Table

Table S1. The EDS results of Co_9S_8 @MoS_{2.}

Figure S1. The XRD curves of pure Co_9S_8 and pure MoS_2 .

Figure S2. Different magnification FESEM images (a, b) pure MoS_2 , (c, d) pure Co_9S_8 .

Figure S3. The discharge capacity of pure Co_9S_8 , pure MoS_2 and Co_9S_8 @MoS₂ at current density of 1.0 A g⁻¹

Figure S4. The FESEM image of $Co_9S_8@MoS_2$ at different magnification after 300 cycles.

Figure S5. Nyquist plots of the AC impedance spectra for pure Co_9S_8 , MoS_2 and Co_9S_8 @MoS₂

Element	Weight/%	Atomic/%
S	40.51	59.99
Со	20.55	18.04
Мо	38.94	21.97
Aggregate	100	100