A general steam-assisted method for one-step synthesis of polymeric carbon nitride nanosheets with/without doping for efficient photocatalytic hydrogen evolution

Zhu Shu ^{*a,b*}, Yigen Tan ^{*a*}, Jun Zhou ^{*a,b,**}, Tiantian Li ^{*c*}, Jieyu Chen ^{*a*}, Donghang Chen ^{*a*},

Wenbin Wang ^a, Zhengliang Zhao ^a and Xiang Hu ^a

^a Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty

of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074,

China

^b Zhejiang Institute, China University of Geosciences, Hangzhou 311305, China

^c College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of

Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal

University, Xinyang 464000, China

* Corresponding authors at: 388 Lumo Road, Wuhan 430074, China.

E-mail addresses: shuzhu@cug.edu.cn; zhoujun@cug.edu.cn

The preparation of photocatalyst-coated FTO glass: First, 20 mg catalyst was dispersed in a 60 mL acetone solution containing 40 mg iodine by sonicating for 10 min and standing for 30 min. Next, two clean FTO glasses were inserted into the solution and electroplated at 10 V DC voltage for 10 min. Finally, the catalyst-coated FTO glass was annealed at 150 $^{\circ}$ C for 2 h.

Figure S1. TG and DSC curves of Mg(OH)₂.

Figure S2. Yield of bulk PCN and PCN nanosheets.

Figure S3. The collection process of production.

Figure S4. EDS spectrum of HCNS-16.

Table S1The eZAF smart quant results of HCNS-16

Element	Weight %	Atomic %	Net Int.	Error %	Kratio	Z	А	F
СК	39.49	43.21	334.97	4.48	0.2951	1.0132	0.7379	1.0000
N K	60.51	56.79	103.47	11.91	0.0786	0.9910	0.1312	1.0000

Parameter	Description	Data		
М	Mole number of H ₂ evolution	Determined in the test (mol)		
N _A	Avogadro constant	6.022×10 ²³ mol ⁻¹		
h	Planck constant	6.626×10 ⁻³⁴ J s		
с	Speed of light	3×10 ⁸ m s ⁻¹		
Р	Power of lamp	44.8 mW cm ⁻²		
S	Irradiated area	38.5 cm ²		
t	Reaction time	Determined in the test (s)		
2	Wavelength of	Determined in the test (300, 350, 400, 420, 450, 500		
λ	monochromatic light	or 600 nm)		

Table S2

Figure S5. (a) XRD patterns, (b) FT-IR, (c) PL and (d) UV-vis DRS spectra of Pt-HCNS-16-fresh and Pt-HCNS-16-used.

Figure S6. (a) and (b) SEM images of HCNS-12. (c) and (d) SEM images of PHCNS-12 and SHCNS-12. (e) XRD patterns and (f) FT-IR spectra of HCNS-12, PHCNS-12 and SHCNS-12.