# Influence of substrate on ultrafast interfacial charge transfer and dynamical interlayer excitons in monolayer WSe<sub>2</sub>/graphene heterostructures

Xiao Xing<sup>1</sup>, Litao Zhao<sup>1</sup>, Wenjie Zhang<sup>2</sup>, Zhuo Wang<sup>1</sup>, Huaying Chen<sup>4</sup>,Huimin Su<sup>3</sup>, Guohong Ma<sup>2\*</sup>, Junfeng Dai<sup>3\*</sup>, Wenjing Zhang<sup>1\*</sup>

<sup>1</sup>International Collaborative Laboratory of 2D Materials for Optoelectronics Science

and Technology of Ministry of Education, Institute of Microscale Optoelectronics,

Shenzhen University, Shenzhen 518060, China

<sup>2</sup> Department of Physics, Shanghai University, 99 Shangda Road, Shanghai 200444,

China

<sup>3</sup> Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China

<sup>4</sup>School of Mechanical Engineering and Automation, Harbin Institute of Technology,

Shenzhen, Shenzhen 518055, China

## **1.** Sample preparation

#### **1.1 Preparation of graphene**

Large-area monolayer (ML) graphene grown by CVD on copper foils<sup>1</sup> and transferred onto a sapphire substrate using a polymethyl methacrylate (PMMA)mediated transfer method.<sup>2</sup> Large-area ML graphene was grown on copper foils at  $1000^{\circ}$ C by a CVD method using 200 sccm argon and 20 sccm hydrogen as the growth cleaning gas, 10 sccm methane as the carbon source as reported elsewhere.<sup>1</sup>

#### 1.2 Preparation of WSe<sub>2</sub>

The continuous WSe<sub>2</sub> ML were direct growth on a sapphire substrate by CVD system.<sup>3</sup> High purity WO<sub>3</sub> was placed in a ceramic boat at the heating center of the furnace. WO<sub>3</sub> was heated by heating tape (1000 $^{\circ}$ C), and Se powder was heated by heating tape (250 $^{\circ}$ C) and carried by Ar and H<sub>2</sub> (Ar=200sccm, H<sub>2</sub>=20sccm) to the furnace heating center. A sapphire substrate was placed in the downstream side 150 mm away from the ceramic boat (about 850  $^{\circ}$ C), and the growth time was 20 minutes.

# 1.3 Preparation of WSe<sub>2</sub>/Gr heterostructures

To stack the WSe<sub>2</sub> ML on graphene, First, Large-area ML graphene was grown on copper foils, and then transferred onto a sapphire substrate using a PMMA-mediated transfer method. <sup>2</sup> After that, a layer of PMMA thin film was coated on the WSe<sub>2</sub>/sapphire as a transfer supporting layer. After the wet etching of sapphire by KOH solution, the PMMA-supported WSe<sub>2</sub> film was transferred to the top of the graphene/sapphire substrate, followed by the removal of PMMA using acetone.

### 1.4 Preparation of Gr /WSe<sub>2</sub> heterostructures

To stack the graphene ML on WSe<sub>2</sub>, a layer of PMMA thin film was coated on the graphene/Cu foil as a transfer supporting layer. After the wet etching of Cu by an aqueous solution containing  $Fe^{3+}$  ions, the PMMA-supported graphene film was transferred to the top of the as-grown WSe<sub>2</sub> ML film, followed by the removal of PMMA using acetone.

# 2. The Raman parameters of graphene and the two stack heterostructures



Figure S1 The Raman spectra of G band and 2D band in the graphene, WSe<sub>2</sub>/Gr heterostructure and Gr/WSe<sub>2</sub> heterostructure.

| heterostructures               |        |                         |         |                         |  |
|--------------------------------|--------|-------------------------|---------|-------------------------|--|
|                                | Peak(G | FWHM(cm <sup>-1</sup> ) | Peak(2D | FWHM(cm <sup>-1</sup> ) |  |
|                                | band)  |                         | band)   |                         |  |
| Graphene/sapphire              | 1588   | 20                      | 2687    | 33.2                    |  |
| WSe <sub>2</sub> /Gr/sapphire  | 1587   | 27                      | 2688.8  | 36.3                    |  |
| Gr/ WSe <sub>2</sub> /sapphire | 1590   | 19.6                    | 2687.9  | 36.9                    |  |

Table S1 The fitting parameters of Raman spectra of graphene and the two stack

Figure S1 shows the Raman spectra of G band and 2D band in the graphene, WSe<sub>2</sub>/Gr heterostructure and Gr/WSe<sub>2</sub> heterostructure. Table S1 shows the Raman parameters (the position of the G and 2D peaks, and the FWHM of the G and 2D peak ) of the three samples. In contrast to the position of the G-band peak in ML graphene (located at 1588 cm<sup>-1</sup>), the position of the G-band peak in the WSe<sub>2</sub>/Gr (Gr/WSe<sub>2</sub>) heterostructure was blue shifted by ~1 cm<sup>-1</sup> (red shifted by ~2 cm<sup>-1</sup>), indicating that the charge transfer between WSe<sub>2</sub> and graphene was different in the two heterostructures. Normally, pristine CVD-grown ML graphene is hole doped. <sup>4, 5</sup>. Thus, compared with the pristine graphene, following photoexcitation by the Raman laser, the blue shift of the G-band peak in the WSe<sub>2</sub>/Gr heterostructure indicates that the ML graphene accepted electrons from the ML WSe<sub>2</sub>, while the red shift of the G-band in the Gr/WSe<sub>2</sub> heterostructure indicates that the ML graphene donated

electrons to the ML WSe<sub>2</sub>.<sup>6</sup> We also contrast the FWHM of G peak in the three samples. The increase in the FWHM of the G peak for WSe<sub>2</sub>/ Gr heterostructure indicate that the graphene accepted electrons, and the decrease in the FWHM of the G peak for Gr /WSe<sub>2</sub> heterostructure indicate that the graphene donated electrons. The results of both the Raman position shift of G band and the FWHM of G band display the same conclusion. We also excluded the contribution from the strain state effect. If the strain effect dominates the Raman spectra shift, the position of 2D band must show blue-shift the same as the G band in WSe<sub>2</sub>/Gr heterostructure. <sup>7, 8</sup> However, in contrast with the ML graphene, the position of 2D band is redshifted 2cm<sup>-1</sup> while the G band is blueshifted 1cm<sup>-1</sup> in WSe<sub>2</sub>/Gr heterostructure. And also the FWHM of the G band are random variation with the effect of strain.



FigureS2 The Raman spectra of  $A_{1g}$  band in the monolayer WSe<sub>2</sub> and the two heterostructures

|                                | Peak(A <sub>1g</sub> | FWHM(cm <sup>-1</sup> ) |  |
|--------------------------------|----------------------|-------------------------|--|
|                                | band)                |                         |  |
| WSe <sub>2</sub> /sapphire     | 252.1                | 14.1                    |  |
| WSe <sub>2</sub> /Gr/sapphire  | 252.1                | 14.5                    |  |
| Gr/ WSe <sub>2</sub> /sapphire | 252.4                | 14.7                    |  |

Table S2 The fitting parameters of  $A_{1g}$  band in monolayer  $WSe_2$  and the two stack heterostructures

After repeated Raman spectroscopy testing, we found that the position of  $A_{1g}$  lines shows no shift among the three samples. The Raman spectra of  $A_{1g}$  band in the monolayer WSe<sub>2</sub> and the two heterostructures are shown in Fig.S2. The fitting parameters of the  $A_{1g}$  band are shown in Table S2.

3. The contrast dynamics of photoinduced THz conductivities ( $\Delta\sigma$ ) of the WSe<sub>2</sub>/Gr, Gr/WSe<sub>2</sub> heterostructures and its constituent monolayers between the photo energy of 1.55eV and 3.1 eV



Figure S3 The contrast of photoinduced terahertz conductivity ( $\Delta \sigma$ ) of the two stacks of heterostructures and its constituent monolayers with the pump energy of 3.1 eV and 1.55 eV.

Figure S3(a)-(d) show the normalized photoinduced THz conductivities ( $\Delta\sigma$ ) of the two heterostructures and its constituent monolayers as a function of optical pump-THz probe delay, with the optical pump fluence fixed at  $30\mu J/cm^2$ . If the heterostructures are pumped with the photo energy of 1.55 eV, only electron-holes of the graphene layer can be excited, while WSe<sub>2</sub> layer remains unexcited due to the lower pump energy than the energy band gap of WSe<sub>2</sub>. Both Gr/WSe<sub>2</sub> and WSe<sub>2</sub>/Gr heterostructures displayed the THz signal of graphene under photoexcitation of 1.55 eV. Hence, It should be noted that photoexcitation with photoenergy of 3.1 eV can excite the electron-hole pairs of both the top and bottom layers of the heterostructures. For monolayer graphene, the THz signal of both 400nm pump and 800 nm pump are the same. For both the heterostructures, the WSe<sub>2</sub> is used as light absorption material when photoexcited with 3.1 eV. The results of photoinduced THz conductivity of the samples with 3.1 eV are discussed in the text.

4. Typical transient absorption spectra (TAS)of the two heterostructures and ML WSe<sub>2</sub> collected at several delay times



Figure S4 (a)-(c) display the transient absorption spectra of the two heterostructures and ML WSe<sub>2</sub> collected at several delay times with the pump fluence of  $80\mu J/cm^2$ , respectively.

Typical TAS of the two heterostructure types and ML WSe<sub>2</sub> collected at several delay times under 400nm excitation (pump density of  $80\mu J/cm^2$ ) are shown in Figure S4. These spectra represent the pump-induced absorption changes observed in the samples, namely the differential optical density with and without pump light excitation ( $\Delta OD = OD_{pump} - OD_0$ ). A broad photobleaching signal are clearly seen, and the bleaching signal peaked around 750nm and 500nm are indicated as "A1" "A2", and "C1" "C2" in Figure 1(b), which are corresponding to the A-exciton, and C-exciton transition of WSe<sub>2</sub> ML. The positive peaks for atomically thin vdW heterostructures are usually attributed to peak shift and broading of A/C exciton states,<sup>9, 10</sup> excited-state absorption and/or the absorption of new generated transient species, for example, the effect of charges at high pump conditions<sup>11, 12</sup>.

5. The fast components ( $\tau_1$ ) and slow components ( $\tau_2$ ) and ( $\tau_3$ ) of the



A exciton dynamics as a function of the pump fluence

FigureS5 The fast components  $\tau_1$  (a) and slow components  $\tau_2$  (b) and  $\tau_3$  (c) of the A exciton dynamics as a function of the pump fluence.

Figure S5 displays the fast components ( $^{\tau}$ 1) and slow components ( $^{\tau}$ 2) and ( $^{\tau}$ 3) of the A exciton dynamics as a function of the pump fluence, respectively. In WSe<sub>2</sub>, the fast component  $^{\tau}$ 1 (2~3 ps) decrease as the pump fluence increases in the two heterostructures and ML WSe<sub>2</sub>, which display the process of Auger-assisted trapping of carriers in defects<sup>13-15</sup>. The slow component  $^{\tau}$ 2 (20ps~50ps) is not affected on the pump fluence or increases as the pump fluence in both the heterostructures and individual WSe<sub>2</sub>, which indicates that the exciton-phonon scattering process plays a dominated role in this process.<sup>16, 17</sup> The component  $^{\tau}$ 3 (hundreds of ps) are independent of the excitation fluence, which indicates that  $^{\tau}$ 3 comes from the electron-hole recombination.<sup>15</sup> In the heterostructures, the hot carrier redistribution ( $^{\tau}$ sr) is maintained by efficient carrier-carrier thermalization, accompanied with the process of charge transfer. Then the process of Auger-assisted trapping in defects ( $^{\tau}$ as) removes the energy from the high-energy tail of the hot-carrier distribution.

Thus,  $\tau_1$  can be given by  $1/\tau_{1=}1/\tau_{sr} + 1/\tau_{as}$ . In heterostructures, the slow component ( $\tau_2$ ) and ( $\tau_3$ ) exhibited the same process as in ML WSe<sub>2</sub>.

# 6. The calculation methods of the average exciton lifetime

The triexponential function mentioned above can be described as:

$$\sum_{\mathbf{l}(\mathbf{t})=-i} \alpha_i \exp^{i\omega}(-t/\tau_i)$$
 Eq. (1)

Here,  $\tau_i$  is the decay time,  $\alpha_i$  represents the amplitude at t=0, and i stands for the number of decay channels.

The average lifetime is given by

$$\bar{\tau} = \frac{\alpha_1 \tau_1^2 + \alpha_2 \tau_2^2 + \alpha_3 \tau_3^2}{\alpha_1 \tau_1 + \alpha_2 \tau_2 + \alpha_3 \tau_3}$$
 Eq. (2)

### References

- X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, *Science*, 2009, **324**, 1312.
- 2. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, *Nano Letters*, 2009, **9**, 30-35.
- 3. B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma and C. Zhou, ACS Nano, 2015, 9, 6119-6127.
- 4. W. Zhang, C.-T. Lin, K.-K. Liu, T. Tite, C.-Y. Su, C.-H. Chang, Y.-H. Lee, C.-W. Chu, K.-H. Wei, J.-L. Kuo and L.-J. Li, *ACS Nano*, 2011, **5**, 7517-7524.
- 5. S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G. W. Flynn and L. E. Brus, *Nano Letters*, 2010, **10**, 4944-4951.
- A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H.
  R. Krishnamurthy, A. K. Geim, A. C. Ferrari and A. K. Sood, *Nature Nanotechnology*, 2008, 3, 210.
- Z. H. Ni, W. Chen, X. F. Fan, J. L. Kuo, T. Yu, A. T. S. Wee and Z. X. Shen, *Physical Review B*, 2008, 77, 115416.
- 8. Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng and Z. X. Shen, ACS Nano, 2008, 2, 2301-2305.
- 9. S. Sim, J. Park, J.-G. Song, C. In, Y.-S. Lee, H. Kim and H. Choi, *Physical Review B*, 2013, **88**, 075434.
- 10. G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr and X. Li, *Nature Communications*, 2015, **6**, 8315.
- 11. T. Borzda, C. Gadermaier, N. Vujicic, P. Topolovsek, M. Borovsak, T. Mertelj, D. Viola, C. Manzoni, E. A. A. Pogna, D. Brida, M. R. Antognazza, F. Scotognella, G. Lanzani, G. Cerullo and

D. Mihailovic, Advanced Functional Materials, 2015, 25, 3351-3358.

- 12. E. A. A. Pogna, M. Marsili, D. De Fazio, S. Dal Conte, C. Manzoni, D. Sangalli, D. Yoon, A. Lombardo, A. C. Ferrari, A. Marini, G. Cerullo and D. Prezzi, *ACS Nano*, 2016, **10**, 1182-1188.
- 13. C. J. Docherty, P. Parkinson, H. J. Joyce, M.-H. Chiu, C.-H. Chen, M.-Y. Lee, L.-J. Li, L. M. Herz and M. B. Johnston, *ACS Nano*, 2014, **8**, 11147-11153.
- 14. H. Choi, F. Borondics, D. A. Siegel, S. Y. Zhou, M. C. Martin, A. Lanzara and R. A. Kaindl, *Applied Physics Letters*, 2009, **94**, 172102.
- 15. H. Wang, C. Zhang and F. Rana, *Nano Letters*, 2015, **15**, 339-345.
- 16. K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, *Physical Review Letters*, 2010, **105**, 136805.
- 17. T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler and C. Schüller, *Applied Physics Letters*, 2011, **99**, 102109.