Electronic Supplementary Information

HierarchicalNiMoO4@Co3V2O8HybridNanorod/NanosphereClustersasAdvancedElectrodesforHigh-performanceElectrochemicalEnergy Storage

Bingbing Hu, Yuan Cen, Chuanlan Xu, Qin Xiang, Muhammad Kashif Aslam, Lijun Liu, Sha Li, Yuping Liu, Danmei Yu*, Changguo Chen*

College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China

*Corresponding Authors

*E-mail: yudanmei-1@163.com

*E-mail: cgchen@cqu.edu.cn

Acknowledgment

This research work was supported by National Natural Science Foundation of China (No.21406021)

Fig. S1. TEM image of NiMoO₄ nanorod (a) and $Co_3V_2O_8$ nanosphere (b).

Fig. S2. SEM images of the NMO@CVO-2 (a), NMO@CVO-4 (b) and NMO@CVO-16 (c), respectively.

Fig. S3. The nitrogen adsorption-desorption isotherms and BJH pore size distribution plot (inset) of the NMO (a) and CVO (b).

Fig. S4. (a) Cyclic voltammogram (CV) curves comparison of NMO@CVO-2, NMO@CVO-4, NMO@CVO-8 and NMO@CVO-16 electrodes at a scan rate of 25 mV s⁻¹; (b) galvanostatic charge-discharge (GCD) curves comparison of NMO@CVO-2, NMO@CVO-4, NMO@CVO-8 and NMO@CVO-16 electrodes at a current density of 1 A g⁻¹; (c) CV curves comparison of NMO, CVO, NMO@CVO-8 and Ni substrate at a scan rate of 25 mV s⁻¹.

Fig. S5. (a), (c), (e), (g), (i) CV curves of NMO, CVO, NMO@CVO-2, NMO@CVO-4 and NMO@CVO-16, respectively, at the scan rate between 10 and 100 mV s⁻¹; (b), (d), (f), (h), (j) GCD curves of NMO, CVO, NMO@CVO-2, NMO@CVO-4 and NMO@CVO-16, respectively, at the current densities between 0.5 and 5 A g⁻¹; (k) The rate performance with specific capacitance values calculated from GCD curves of NMO@CVO-2, NMO@CVO-4, NMO@CVO-8 and NMO@CVO-16, respectively.

Fig. S6. the morphology of NMO@CVO-8 electrode before (a) and after (b) cycling.

Fig. S7. Cycling cycling performance during 2000 cycles at a current density of 3 A g ⁻¹ for NMO@CVO-2, NMO@CVO-4, NMO@CVO-8 and NMO@CVO-16 electrodes, respectively.

Fig. S8. (a) CV curves of active carbon (AC) at the scan rate between 10 and 100 mV s⁻¹; (b) GCD curves of active carbon (AC) at the current densities between 1 and 5 A g^{-1} .

Fig. S9. the cycling stability at current densities of 3 A g^{-1} for activated carbon.

Fig. S10. EIS spectra of before and after cycling of the NMO@CVO-8.

Table. S1. Specific capacitance and cycling performance of the NiMoO₄@Co₃V₂O₈ electrode compared with the NiMoO₄-based or Co₃V₂O₈-based electrodes previously reported in literatures.

Electrode material	Electrolyte	Specific capacitance	Cycling performance	Ref.
MoO ₃ /NiMoO ₄ core/shell nanobelts	3 M KOH	630 F g ⁻¹ (1 A g ⁻¹)	71% (10,000 cycles)	S 1
NiMoO ₄ nanofibers	6 M KOH	335 C g ⁻¹ (1 A g ⁻¹)	72% (3000 cycles)	S2
NiMoO ₄ -PANI core-shell	3 М КОН	1214 F g ⁻¹ (1 A g ⁻¹)	80.7% (2000 cycles)	S 3
nanocomposite				
NiMoO ₄ nanostructures	2 M KOH	341 F g ⁻¹ (1 A g ⁻¹)	57% (3000 cycles)	S4
C@NiMoO4	2 M NaOH	268.8 F g ⁻¹ (1 A g ⁻¹)	88.4% (2000 cycles)	S5
NiCo2O4@NiMoO4 nanofilm	6 M KOH	3.58 F cm ⁻² (5 mA	87% (5000 cycles)	S 6
core/shell arrays		cm ⁻²)		
Co ₃ V ₂ O ₈ thin nanoplates	3 M KOH	516 F g ⁻¹ (0.5 A g ⁻¹)	89% (2000 cycles)	S7
Co ₃ V ₂ O ₈ nanoparticles	6 M KOH	430 F g ⁻¹ (1 A g ⁻¹)	92.2% (3000 cycles)	S8
NiMoO ₄ @Co ₃ V ₂ O ₈ hybrid nanorod	2 M KOH	357 C g ⁻¹ (1 A g ⁻¹)	89.7% (5000 cycles)	This
nanosphere clusters				work

Refences:

[S1] X. Zhang, L. Wei, X. Guo, Ultrathin mesoporous NiMoO₄-modified MoO₃ core/shell nanostructures: Enhanced capacitive storage and cycling performance for supercapacitors,

Chem. Eng. J., 353 (2018) 615-625.

- [S2] V.S. Budhiraju, R. Kumar, A. Sharma, S. Sivakumar, Structurally stable hollow mesoporous graphitized carbon nanofibers embedded with NiMoO₄ nanoparticles for high performance asymmetric supercapacitors, Electrochimica Acta, 238 (2017) 337-348.
- [S3] H. Gao, F. Wu, X. Wang, C. Hao, C. Ge, Preparation of NiMoO₄-PANI core-shell nanocomposite for the high-performance all-solid-state asymmetric supercapacitor, International Journal of Hydrogen Energy, 43 (2018) 18349-18362.
- [S4] V. Kannan, H.J. Kim, H.C. Park, H.S. Kim, Single-Step Direct Hydrothermal Growth of NiMoO₍₄₎ Nanostructured Thin Film on Stainless Steel for Supercapacitor Electrodes, Nanomaterials (Basel), 8 (2018).
- [S5] C. Wei, Y. Huang, J. Yan, X. Chen, X. Zhang, Synthesis of hierarchical carbon sphere@NiMoO₄ composite materials for supercapacitor electrodes, Ceram. Int., 42 (2016) 15694-15700.
- [S6] W.-d. Xue, W.-j. Wang, Y.-f. Fu, D.-x. He, F.-y. Zeng, R. Zhao, Rational synthesis of honeycomb-like NiCo₂O₄@NiMoO₄ core/shell nanofilm arrays on Ni foam for highperformance supercapacitors, Mater. Lett., 186 (2017) 34-37.
- [S7] Y. Zhang, Y. Liu, J. Chen, Q. Guo, T. Wang, H. Pang, Cobalt vanadium oxide thin nanoplates: primary electrochemical capacitor application, Sci Rep, 4 (2014) 5687.
- [S8] Y.-M. Hu, M.-C. Liu, Y.-X. Hu, Q.-Q. Yang, L.-B. Kong, W. Han, J.-J. Li, L. Kang, Design and synthesis of Ni₂P/Co₃V₂O₈ nanocomposite with enhanced electrochemical capacitive properties, Electrochimica Acta, 190 (2016) 1041-1049.