Electronic Supplementary Information

Control of Thermal Deformation with Photonic Sintering of Ultrathin Nanowire Transparent Electrodes

Zhaoyang Zhong, [‡]^a Seung-Hyun Lee, [‡]^a Pyeongsam Ko, ^{ab} Sin Kwon,^a Hongseok Youn,^b Jae Young Seok, ^{*}^a and Kyoohee Woo,^a*

^aAdvanced Manufacturing Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 305-343, Republic of Korea. E-mail: khwoo@kimm.re.kr, seokjy89@kimm.re.kr ^bDepartment of Mechanical Engineering, Hanbat National University, Dongseodaero 125, Yuseong-gu, Daejeon, 34158, Republic of Korea

* Both authors contribute equally to this work.

Optoelectrical property			Mechanical flexibility			
Rs	Т%	FoM*	Bending radius	Bending cycles	R/R ₀	Ref.
14.4 Ω/sq	89.5%	0.023	Bending radius: 10 mm Twisting angle: 45°	20000	~1	This work
26 Ω/sq	88%	0.011	2 mm	1000	1.15	33
24.5 Ω/sq	90%	0.014	0.5 mm	50000	~1	34
51.27 Ω/sq	95.3%	0.012	-	10000	1.06	35
19 Ω/sq	83%	0.008	-	1000	1	36

Table S1. The comparison of characteristics of IPL-sintered NW flexible transparent electrodes

*FoM: Figure of Merit for transparent conductive materials defined by G. Haacke. ³⁷

Specific heat capacity of Ag NW/PET	235/1030 (J kg ⁻¹ K ⁻¹)		
Density of Ag NW/PET	10500/1430 (kg m ⁻³)		
Thermal conductivity of Ag NW/PET	429/0.189 (W m ⁻¹ K ⁻¹)		
Convective heat transfer coefficient on top surface of Ag NW & PET	30 (W m ⁻² K ⁻¹)		
Convective heat transfer coefficient on bottom surface of PET	300 (W m ⁻² K ⁻¹)		
Emissivity of Ag NW/PET	0.1/0.9		
Interface heat transfer coefficient between Ag NW and PET	120,000 (W m ⁻² K ⁻¹)		
Room temperature	20.15 °C		
Compensation factor of Ag NW/PET	0.043/0.122		

Table S2. The material properties and boundary conditions used in the simulation

Figure S1. Multiple pulse energy irradiation conditions with controlled number of pulses from 1 to 4. Each pulse was operated at 850 V/75 μ s and the frequency was set to 10 Hz. The photographs are of the Ag NW films and their sheet resistance values after IPL irradiation.

Figure S2. Current density-voltage-luminance (J-V-L) characteristics and current efficiency of the OLED device based on the highly flexible Ag NW transparent electrode on the 10 μ m ultrathin PET substrate.

Figure S3. Photographs for measuring the substrate thickness by using a digital Vernier Caliper.