Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

One-pot Synthesis of Ln³⁺-doped Porous BiF₃@PAA Nanospheres for pH-

Responsive Drug Delivery and CT Imaging

Shuang Zhao,^{*a,b*} Rongrong Tian,^{*a,b*} Baiqi Shao,^{*a*} Yang Feng,^{*a,b*} Senwen Yuan,^{*a*} Langping Dong,^{*a,b*} Liang Zhang,^{*a,b*} Zhenxin Wang, *,^{*a,b*} and Hongpeng You^{*,*a,b*}

^aState Key Laboratory of Rare Earth Resource Utilization and State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China

^bUniversity of Science and Technology of China, Hefei 230026, P. R. China

1 Experimental Section

1.1 Materials

 $Ln(NO_3)_3$ were obtained by dissolving respective Ln_2O_3 in dilute HNO₃ under continuous heating and stirring. Bi $(NO_3)_3$ ·5H₂O, NH₄F, PAA (Mw=3000) were purchased from Aladdin (Shanghai, China). Ethylene glycol (EG) were received from Beijing Chemical Reagent Co. (Beijing, China). All reagents were of analytical grade and used as obtained.

1.2 Characterization

The morphology was observed by transmission electron microscope (JEOL-2010, Japan) and a field emission scanning electron microscope (FE-SEM, S-4800) with an energy-dispersive spectrometer (EDS) (Hitachi, Japan). The phase structure and purity were characterized using XRD measurements with a D8 Focus diffractometer (Bruker, Germany). Hydrodynamic sizes of the products were inspected on a Zetasizer Nano ZS (Malvern Instruments, UK). UV-visible-NIR spectra were recorded by Shimadzu UV-3600 spectrophotometer (Shimadzu, Japan). The TG curve was obtained by thermogravimetric (TGA) analyses (TA Instruments, USA). Fourier transform infrared spectroscopy (FTIR) analysis was carried out on a PerkinElmer 580B IR spectrophotometer (PerkinElmer, USA). The fluorescence spectra were obtained on an Edinburgh FLS980 fluorescence spectrometer (Hitachi, Japan). CT images were performed on a 64-detector row CT unit (General Electric, USA).

1.3 Synthesis of BiF₃ and BiF₃: Ln³⁺ particles

BiF₃ sub-microspheres were synthesized by a solvothermal method. Typically, 0.5 mmol Bi(NO₃)·5H₂O, 0.2 g PAA were dissolved in 30 mL EG through ultrasonication to form transparent solution A. At the same time, solution B was prepared by dissolving 2 mmol NH₄F in 8 mL EG. After 10 min continuous stirring, solution B was added into solution A and white precipitation was formed immediately. Then, the mixture was transferred into a 50 mL Teflon-lined autoclave. After heating at 160 °C for 20 h and cooling to room temperature, the products were collected by centrifugation, washed by ethanol and dried at 60 °C. The BiF₃: Ln^{3+} samples were obtained by the same method except the adding of appropriate Ln^{3+} into the solution A accompanied with Bi³⁺.

1.4 In vitro DOX storage and release

The DOX loading capacity was estimated by mixing DOX with BiF₃: 20% Yb, 2% Er in PBS buffer with different pH and agitating overnight at room temperature. The DOX-loaded samples (denoted as BiF₃:Yb,Er@DOX) were obtained by centrifugation at 8000 rpm for 6 min and washed three times with 10 mL PBS buffer at pH 7.4. The DOX loading content (LC) and loading efficiency (LE) were determined by

the following equations:¹

LC (wt %) = (mass of initial DOX - mass of DOX in supernatant solutions) / mass of DOX@BiF₃

LE (%) = (mass of initial DOX - mass of DOX in supernatant solutions) / mass of initial DOX

The in vitro pH-responsive drug release behavior was verified by incubating the DOX-loaded samples at PBS buffers with different pH values (pH 5.0 and pH 7.4) at 37 °C. At different time intervals, the supernatant solution was collected and replaced by the same amount of fresh PBS. The amount of released DOX was calculated by UV–Vis spectral analysis.

1.5 In vitro cytotoxicity and cellular Uptake

A549 cells (1×10^4 cells per well) were seeded and then incubated with different concentrations of the synthesized BiF₃:Yb,Er, pure DOX and BiF₃:Yb,Er@DOX in 96-well plates for 24 h. The cytotoxicity was estimated by the standard MTT assay. For the intracellular uptake, A549 cells seeded in 48-well plates were cultured with free DOX and BiF₃:Yb,Er @DOX (DOX: 5 µg mL⁻¹). At various time intervals, the cells were stained by Hoechst 33324 and then imaged by a fluorescence microscope.

1.6 In vivo antitumor efficacy and toxicity

Balb/c mice (4-7 weeks) were obtained from Vital River Company (Liaoning, China). All animal experiments were performed according to guidance of Institutional Animal Care and Use of Laboratory Animals. The A549 tumor-bearing nude mice model was used to detect the antitumor efficacy of BiF₃:Yb,Er@DOX. The mice were randomly divided into three groups when the tumor reached 100 mm³ and then intravenously injected with saline (100 μ L), pure DOX (100 μ L, DOX: 5 mg kg⁻¹), and BiF₃:Yb,Er@DOX (100 μ L, DOX: 5 mg kg⁻¹) three times every second day, respectively. The body weight and tumor size were recorded every other day for 14 days. The tumor volumes were calculated as V= length × width²/2. Besides, histology and blood hematology analysis were performed on healthy mice to investigate the toxicity of the synthesized BiF₃:Yb,Er, DOX and BiF₃:Yb,Er@DOX. Complete blood panel was recorded at 24 h and the 10th day after intravenously injected with saline, BiF₃:Yb,Er (10 mg kg⁻¹), pure DOX (5 mg kg⁻¹), and BiF₃:Yb,Er@DOX (DOX: 5 mg kg⁻¹). At the 30th day, the heart, liver, spleen,

lung, and kidney were collected and stained with H&E for histology measurement, respectively.

1.7 In vitro and in vivo CT imaging

To evaluate the CT imaging capacity of the synthesized BiF₃, the HU values and the corresponding images of various concentrations of BiF₃:Yb,Er and iobitridol (0, 1.875, 3.75, 7.5, 15, 30, 60, 120 mM) were recorded. Besides, the CT images of A549 cells incubated with BiF₃:Yb,Er (500 μ g mL⁻¹) for different times (0, 6, 12 and 24 h) were obtained at the same time. For in vivo CT imaging, the images of A549 tumor-bearing mice were collected before and after intratumoral injection with 50 μ L BiF₃:Yb,Er (10 mg mL⁻¹) and the parameters were identical with the in vitro measure.

2. Additional Fig. S1-S6 and Table S1-S2

Fig. S1 SEM images of the samples at different reaction times, (a) 0 h, (b) 4 h, (c) 8h, (d) 12 h and (e) 20 h; (f) The corresponding EDX spectrum of the samples obtained at 20 h.

Fig. S2 XRD patterns of the samples at various reaction times, (a) 0 h, (b) 4 h, (c) 8h, (d) 12 h and (e) 20 h.

Fig. S3 Hydrodynamic sizes and corresponding digital photographs of BiF₃:Yb,Er dispersed in (a) DI water, (b) PBS buffer, (c) DMEM, and (d) fetal bovine serum (FBS) for two days, respectively.

Fig. S4 SEM images of (a) $BiF_3:20\%$ Yb,2% Ho and (b) $BiF_3:20\%$ Yb,2% Tm samples. The scale bars are 1 μ m.

Calculation of the energy gap (ΔE) and sensing sensitivity (S)

The fluorescence intensity ratio (FIR) resulting from the ${}^{2}H_{11/2}$ and ${}^{4}S_{3/2}$ thermally coupled levels follows the equation:²

FIR = I_{522}/I_{543} = A + B exp(- Δ E / $k_{\rm B}$ T)

where I_{522} , I_{543} represent the UC intensities, A and B are constants, ΔE is the energy gap between the thermally coupled levels of ${}^{2}H_{11/2}$ and ${}^{4}S_{3/2}$, k_{B} is the Boltzmann constant, and T is the absolute temperature. As shown in Fig. 4(b), a good linear relationship is obtained between Ln(FIR) and 1/T, which can be fitted well with a straight line with a slope of -989.249. And the energy gap ΔE is calculated to be 687.973 cm⁻¹.

In addition, sensing sensitivity (S) is investigated, which can be defined as follows:³

$$S = dR/dT = FIR \times (\Delta E/k_BT^2)$$

As exhibited in Fig. 4(d), the sensitivity values increase gradually with temperature, reaching maximum value of 4.478×10^{-3} K⁻¹ at 493 K.

Fig. S5 Hydrodynamic sizes of BiF₃:Yb,Er samples in PBS buffer with different pH.

Mass ratio of DOX to BiF ₃ :Yb,Er	pH of PBS buffer	LC (wt%)	LE (%)	
1:4	7.4	16.26	77.68	
1:2	7.4	26.90	73.60	
1:1	7.4	38.99	63.91	
1:1	8.0	43.55	77.14	
1:1	9.0	44.88	81.41	
1:2	8.0	28.49	79.70	
1:2	9.0	31.76	93.09	

Table S1 DOX loading content and efficiency at different pH and feeding ratios.

Time	24 h				10 days				
Biochemistry Parameters	Units	Control	BiF ₃ :Yb,Er	DOX	BiF3:Yb,Er @DOX	Control	BiF ₃ :Yb,Er	DOX	BiF3:Yb,Er @DOX
WBC	10 ⁹ L ⁻¹	1.66	1.39	0.39	1.25	1.65	1.09	1.89	1.84
RBC	10 ¹² L ⁻¹	9.09	7.71	9.65	10.08	8.33	8.34	7.66	8.83
HGB	g L-1	144.00	132.00	153.00	161.00	134.00	124.00	121.00	135.00
НСТ	%	45.90	40.40	46.50	46.90	44.00	44.10	39.90	46.60
MCV	Fl	50.50	52.40	48.20	46.50	52.80	52.90	52.10	52.80
MCH	Pg	15.80	17.10	15.90	16.00	16.10	14.90	15.80	15.30
MCHC	g L-1	314.00	327.00	329.00	343.00	305.00	281.00	303.00	290.00

Table S2 Hematology data of the mice treated with saline (control), BiF₃:Yb,Er, pure DOX, and BiF₃:Yb,Er@DOX, respectively.

Fig. S6 Histology analysis major organs for the groups of saline (control), BiF₃:Yb,Er, pure DOX, and BiF₃:Yb,Er@DOX.

Reference

1. H. Li, Y. Cui, J. Sui, S. Bian, Y. Sun, J. Liang, Y. Fan and X. Zhang, ACS Appl. Mater. Interfaces, 2015, 7, 15855-15865.

 B. Dong, B. Cao, Y. He, Z. Liu, Z. Li and Z. Feng, *Adv. Mater.*, 2012, **24**, 1987-1993.
M. Lin, L. Xie, Z. Wang, B. S. Richards, G. Gao and J. Zhong, *J. Mater. Chem. C*, 2019, **7**, 2971-2977.